Supporting Information

Stimuli-Responsive Hydrogel Microcapsules for the Amplified Detection of MicroRNAs

Wen-Hsin Chang^a, Yi-Fang Lee^a, Yen-Wenn Liu^a, Itamar Willner^{*b} and Wei-Ching Liao^{*ac}

^aInstitute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

^bInstitute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

^cCenter for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

Table of Contents

Table S1. The nucleic acid sequences used in this study
Fig. S1. Determination of the ratio of acrylamide/acrydite-nucleic acids4
Fig. S2. Characterization of the microparticles by SEM and EDX analysis
Fig. S3. Characterization of the DNA–acrylamide hydrogel microcapsules by SEM 6
Fig. S4. Sequence design for isothermal strand displacement polymerization/nicking
amplification machinery (SDP/NA)7
Fig. S5. Characterization of the SDP/NA products by gel electrophoresis
Table S2. Comparison of different amplification mechanisms based on oligonucleotide for
miRNA detection

Table S1. The nucleic acid sequences used in this study.

No.	Sequence (5'→3')					
1	/5AmMC6/ TTTTTTAGCTGATAACACTG					
2	/5Acryd/TTTTTTTTAACACTGtCCATCTTTACCAGACAGTGTTATCAGC T					
3	/5Acryd/ TGCTCTAGATCTGGTTG					
4	AAGATGGACAGTGAGCTGATAACACTGTCAACCAGATCTAGAGC					
miR-141	UAACACUGUCUGGUAAAGAUGG					
miR-200a	UAACACUGUCUGGUAA <u>C</u> GAUG <u>U</u>					
miR-200b	UAA <u>U</u> ACUG <u>C</u> CUGGUAA <u>U</u> GAUG <u>A</u>					
miR-21	UA <u>G</u> C <u>UUAUCAGAC</u> U <u>G</u> A <u>U</u> G <u>U</u> UGA					
<i>rfb</i> E	GGCCAAGGATTAGCTGTACAT					
HP	TCCACTCTCGACCTGTCCATCTTTACCAGACAGTGTTATCAGCTGAGG TCGAGAGTGGCTT					
ASHP	GAGAGTGCCACTCTCGACC					

*MiR-200a, miR-200b, and miR-21 were used in the sequence selectivity tests. Underline indicates the nucleotides which are different from miR-141.

Figure S1. (A) Absorbance spectra of a fixed 5 μ M nucleic acid (2) with different concentrations of acrylamides. (B) Calibration curve from absorbance ratio of acrylamide (150 kDa, *ca.* 2110 monomers) to nucleic acid (A₂₀₀/A₂₆₀) under different ratios of acrylamide/nucleic acid (2). The ratio of acrylamide units to nucleic acid (2) was determined spectroscopically to be 176. (C) Absorbance spectra of a fixed 5 μ M nucleic acid (3) with different concentrations of acrylamides. (D) Calibration curve from absorbance ratio of acrylamide (150 kDa, *ca.* 2110 monomers) to nucleic acid (A₂₀₀/A₂₆₀) under different ratios of acrylamide (150 kDa, *ca.* 2110 monomers) to acrylamide units to nucleic acid (3) was determined spectroscopically to be 243.

Characterization of the Microparticles by SEM and EDX Analysis

Figure S2. SEM images and EDX results of uncoated CaCO₃ microparticles (A) and DNA– acrylamide hydrogel-coated CaCO₃ microparticles (B). Scale bars: 1 µm. The EDX results shown higher N and P percentages on DNA–acrylamide hydrogel coated CaCO₃ microparticles indicates the modification of DNA hydrogel on particles surface.

Characterization of the DNA–Acrylamide Hydrogel Microcapsules by SEM

Figure S3. Representative SEM images of DNA–acrylamide hydrogel microcapsules after the etching of the $CaCO_3$ core. Scale bar: 1 μ m.

Sequences Design for Isothermal Strand Displacement Polymerization/Nicking

Amplification Machinery (SDP/NA)

Figure S4. Schematic representation of the sequence replicated by the *Bst* polymerase and the nicking site of the Nt.BbvCI nicking endonuclease involved in the isothermal strand displacement polymerization/nicking amplification machinery (SDP/NA). The sequence with underline represents an auxiliary hairpin DNA strand (ASHP), it can bind to the open hairpin (HP) and acts as a primer for polymerase replication. The symbol (♥) indicates Nt.BbvCI nicking site. MiR-141 analogue is the product of strand-displacement amplification.

Characterization of the SDP/NA Products by Gel Electrophoresis

Figure S5. Native polyacrylamide gel electrophoresis image corresponding to isothermal strand displacement polymerization/nicking amplification machinery (SDP/NA) products. Lane 1: DNA marker; Lane 2: hairpin DNA (HP); Lane 3: auxiliary hairpin DNA strand (ASHP); Lane 4: mir-141; Lane 5: SDP/NA reaction 15 min without miR-141; Lane 6: SDP/NA reaction 15 min with 50 nM miR-141; Lane 7: SDP/NA reaction 30 min without miR-141; Lane 8: SDP/NA reaction 30 min with 50 nM miR-141. 12 % of native polyacrylamide gel.

Table S2. Comparison of different amplification mechanisms based on oligonucleotide for miRNA detection.	
--	--

Target	Method	Amplification mechanism	Detection limit	Linear range	Assay time	Remarks	Ref.
miR-21 miR-141	Fluorescence	DNA polymerase/NEase-assisted signal amplification	9.8 pM (miR-21) 6.1 pM (miR-141)	2×10 ⁻¹¹ to 5×10 ⁻¹⁰ M	22 h	Integration with silver nanoclusters (AgNCs) for simultaneously detecting dual targets; study in spiked serum samples.	1
miR-21	Fluorescence	Strand displacement reaction	4.4 pM	10 ⁻¹² to 2×10 ⁻¹⁰ M	6 h	Integration with dye-loaded poly(ethylmethacrylate)-based polymer nanoparticles; cell lysate study.	2
miR-20a	Fluorescence	Catalytic hairpin assembly (CHA) reaction	0.491 pM	5×10 ⁻¹³ to 2×10 ⁻¹⁰ M	5 h	Integration with Fe_3O_4 nanoparticles cross-linked carbon ($Fe_3O_4@C$); study in cell culture samples.	3
miR-141	Fluorescence	Duplex-specific nuclease (DSN) and telomerase amplification	0.28 pM	10 ⁻¹² to 10 ⁻⁷ M	5 h	Integration with CdSe/ZnS quantum dots (QDs); serum sample study. However, 55°C heating process is needed.	4
miR-203	Fluorescence	DNA chain displacement recycle (CDR) reaction	10 pM	10^{-11} to 10^{-7} M	1.5-2 h	Integration with gold nanoparticles (AuNPs); study in cell culture samples.	5
miR-141	Fluorescence	Duplex-specific nuclease (DSN) amplification	0.42 pM	5×10 ⁻¹² to 5×10 ⁻⁹ M	90 min	Integration with magnetic nanoparticles coated with poly-dopamine (MNPs@PDA); cell lysate study. However, 50°C heating process is needed.	6
miR-21	Fluorescence	λ exonuclease amplification	20 pM	2×10 ⁻¹¹ to 5×10 ⁻⁹ M	70 min	Integration with graphene oxide (GO); spiked biological fluids and cell lysate study.	7
miR-141	Fluorescence	Isothermal strand displacement polymerization/nicking amplification machinery (SDP/NA)	44.9 pM	10 ⁻¹⁰ to 10 ⁻⁷ M	90 min	Integration with CdSe/ZnS quantum dots-loaded DNA hydrogel microcapsules; study in spiked serum samples; potential control-released drug carriers.	This study

*It should be noted that the present sensing platform reveals comparable sensitivity to other optical (fluorescence) assays for the detection of miRNA. Several advantages of the present method might include faster detection time-intervals and lack of susceptibility to environmental interferences that might accompany the same of the nanomaterial optical transducers (*e.g.* AgNCs, AuNPs or graphene oxide), such as thiols or dopamine. All sensing platforms, including ours, however, are far below the sensitivity demonstrated by the commercially available methods. Nonetheless, the progress and advances to improve the sensitivity of non-PCR sensing platforms by biocatalytic and DNA-machinery (and adaptation of highly-sensitive DNA machinery⁸ and DNA biocatalytic circuitries for miRNA-sensing) are promising pathways to follow. Particularly, faster analytical procedures and the lack of auxiliary instruments demonstrated by these alternative methods could provide effective means for point-of-care detection and field-test analyses of miRNAs.

References

- 1. Li, M.; Xu, X.; Cai, Q. DNA Polymerase/NEase-Assisted Signal Amplification Coupled with Silver Nanoclusters for Simultaneous Detection of Multiple MicroRNAs and Molecular Logic Operations. *Sensors Actuators B: Chem.* **2021**, *327*, 128915.
- 2. Egloff, S.; Melnychuk, N.; Reisch, A.; Martin, S.; Klymchenko, A. S. Enzyme-Free Amplified Detection of Cellular MicroRNA by Light-Harvesting Fluorescent Nanoparticle probes. *Biosens. Bioelectron.* **2021**, *179*, 113084.
- 3. Fan, Y.; Liu, Y.; Zhou, Q.; Du, H.; Zhao, X.; Ye, F.; Zhao, H. Catalytic Hairpin Assembly Indirectly Covalent on Fe₃O₄@C Nanoparticles with Signal Amplification for Intracellular Detection of miRNA. *Talanta* **2021**, *223*, 121675.
- 4. Jou, A. F.-j.; Lu, C.-H.; Ou, Y.-C.; Wang, S.-S.; Hsu, S.-L.; Willner, I.; Ho, J.-a. A. Diagnosing the MiR-141 Prostate Cancer Biomarker Using Nucleic Acid-Functionalized CdSe/ZnS QDs and Telomerase. *Chemical Science* **2015**, *6*, 659–665.
- 5. Zhang, J.; Zhang, H.; Ye, S.; Wang, X.; Ma, L. Fluorescent-Raman Binary Star Ratio Probe for MicroRNA Detection and Imaging in Living Cells. *Anal. Chem.* **2021**, *93*, 1466-1471.
- 6. Sun, Y.; Wang, C.; Tang, L.; Zhang, Y.; Zhang, G.-J. Magnetic-Enhanced Fluorescence Sensing of Tumor MiRNA by Combination of MNPs@PDA with Duplex Specific Nuclease. *RSC Advances* **2021**, *11*, 2968–2975.
- Ai, X.; Zhao, H.; Hu, T.; Yan, Y.; He, H.; Ma, C. A Signal-On Fluorescence-Based Strategy for Detection of MicroRNA-21 Based on Graphene Oxide And λ Exonuclease-Based Signal Amplification. *Anal. Methods* 2021, 13, 2107–2113.
- 8. Wang, F.; Liu, X.; Willner, I. DNA Switches: From Principles to Applications. *Angew. Chem. Int. Ed.* **2015**, *54*, 1098–1129.