

Nanoscale

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

Graphdiyne-supported single-cluster electrocatalysts for highly efficient carbon dioxide reduction reaction

DOI: 10.1039/x0xx00000x

Pingji Ge,^{a,b} Xingwu Zhai,^{a,b} Xiaoyue Liu,^{a,b} Yinglun Liu,^{a,b} Xiaodong Yang,^{a,b} Hongxia Yan,^{a,b} Guixian Ge,^{*,a,b} Jueming Yang,^{*,a,b} and Yunhu Liu,^{*,a,b}

Fig.S1. Projected density of states (PDOS) of C-p orbital and TM-d orbital for TM₃@GDY.

- E-mail: geguixian@126.com, juemingyang11@gmail.com, liuyh@shzu.edu.cn ^{b.} Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-basin System Ecology, Shihezi University North fourth Road, Shihezi City, P.R. China
- E-mail: geguixian@126.com, juemingyang11@gmail.com, liuyh@shzu.edu.cn available. See DOI (ESI) Information
- †Electronic Supplementary 10.1039/x0xx00000x

Fig. S2 The most stable configurations of top views and side views of adsorbed CO2 on TM₃@GDY

Fig. S3 The Bader charge analysis. The isosurface value is set to be 0.01 e/Å and the positive and negative charges are shown in yellow and cyan, respectively.

Fig. S4 Free-energy profiles for CO_2RR on (a) $Mn_3@GDY$, (b) $Co_3@GDY$, (c) $Ru_3@GDY$ and (d) $V_3@GDY$.

Fig. S6. (a) The variations of the C-TM (the closest TM atom of the adsorbed product) bond lengths through reaction pathway. (b). The Bader charge analysis for three parts of Cr₃@GDY along the reaction pathway.

Fig.S7. Projected density of states (PDOS) of C-p orbital and Cr-d orbital of each Cr atom after CHOH generation on (a)Cr@GDY, (b)Cr2@GDY, (c)Cr3@GDY and (d)Cr4@GDY.

Nanoscale

ARTICLE

 $\label{eq:table_state} \textbf{Table S1.} The binding energies (eV) of TM_3@GDY and cohesive energies (eV) of the corresponding bulk metal.$

Catalysts	binding energies	cohesive energies
Mn₃@GDY	-9.34	-7.80
Cr₃@GDY	-8.48	-7.70
Co₃@GDY	-14.40	-9.44
Rh₃@GDY	-14.42	-25.84
Ru₃@GDY	-17.88	-14.78
V₃@GDY	-19.03	-14.54
Pt₃@GDY	-22.89	-22.19
Mo₃@GDY	-16.84	-14.72
Cu₃@GDY	-18.19	-14.84
Ni₃@GDY	-14.48	-21.84

Nanoscale

Table S2. The adsorption energies (Eads, eV), O-C-O bond angles (angles, °), and charge transfers of CO₂ (Q, |e|) of the most stable CO₂ adsorption configurations on TM₃@GDY.

E _{ads}	angles	Q
-1.05	138.22	0.69
-0.79	137.12	0.74
0.11	139.10	0.28
-0.21	179.57	0.04
-0.16	178.61	0.06
-1.24	155.07	0.27
-0.31	178.93	0.04
-0.22	179.40	0.04
-0.28	179.39	0.05
-0.24	128.57	0.83
	E _{ads} -1.05 -0.79 0.11 -0.21 -0.16 -1.24 -0.31 -0.22 -0.28 -0.24	Eadsangles-1.05138.22-0.79137.120.11139.10-0.21179.57-0.16178.61-1.24155.07-0.31178.93-0.22179.40-0.28179.39-0.24128.57

Table S3. The maximum free energy change (ΔG_{max} , eV) and corresponding step of TM₃@GDY.

Catalysts	ΔG_{max}	Step
Mn₃@GDY	0.53	*CHO-*CHOH
Cr₃@GDY	0.39	*СНО-*СНОН
Co₃@GDY	0.48	*CO-*CHO
Rh₃@GDY	0.99	*CO-*CHO
Ru₃@GDY	0.48	*CHO-*CHOH
V₃@GDY	0.72	*СНО-*СНОН
Pt₃@GDY	2.09	*CO ₂ -*COOH
Mo₃@GDY	2.58	*СНО-*СНОН
Cu₃@GDY	1.26	*CO ₂ -*COOH
Ni₃@GDY	1.10	*CO ₂ -*COOH

Nanoscale

ARTICLE

Table S4. Energy change (ΔG , eV) of CO desorption and further reaction step for Cr₃@GDY.

step	ΔG
*CO-*CHO	0.30
*СО-*СОН	1.91
CO desorption	1.45