SUPPLEMENTARY INFORMATION:

Transition-Metal Nitride Halide Dielectrics for Transition-Metal Dichalcogenide Transistors

Mehrdad Rostami Osanloo¹, Ali Saadat², Maarten L. Van de Put², Akash Laturia², and William G. Vandenberghe²

¹ Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA ² Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

Corresponding Author: William. G. Vandenberghe (william.vandenberghe@utdallas.edu)

Table S1. Structural characterization of the materials under study. The TMNH dielectric materials are categorized under α -form and β -form, with orthorhombic and trigonal crystal systems, respectively. The space group of the bulk is also listed for each material.

Materials	Туре	Bulk Space Group	Crystal System
ZrNCl	β - form	R-3m	Trigonal
HfNCl	β - form	R-3m	Trigonal
TiNCl	α - form	Pmmn	Orthorhombic
ZrNBr	β - form	R-3m	Trigonal
HfNBr	β - form	R-3m	Trigonal
TiNBr	α - form	Pmmn	Orthorhombic

Table S2. Structural parameters of TMNH materials in this study. Exfoliation energy for each material is reported.

Material	Bulk	Monolayer			Monolayer Supercell	Exfoliation Energy
	$d_i(Å)$	a (Å)	t (Å)	Δ (%)	Thickness (Å)	$(meV/Å^2)$
ZrNCl	9.26	3.61	9.27	0.07	26.49	16.96
HfNCl	9.24	3.59	9.26	0.21	26.43	17.85
TiNCl	7.77	3.26	7.88	1.36	25.69	15.55
ZrNBr	9.80	3.65	9.82	0.18	26.83	18.81
HfNBr	9.80	3.61	9.82	0.18	26.77	18.95
TiNBr	8.38	3.36	8.40	0.31	24.96	18.00

Material	Phonon Energy (meV)							
	79.28	72.93	72.93	70.98	62.57	62.57		
ZrNCl	8.94	3.62	1.82	21.51	21.51	19.17		
	19.17	14.68	14.68	0.01i	0.05i	0.05i		
	79.35	77.51	77.51	74.29	67.36	67.36		
HfNCl	33.84	32.25	18.92	17.92	17.92	17.57		
	17.57	12.90	12.90	0.01i	0.02i	0.02i		
TINCI	79.63	74.12	73.58	56.76	49.98	49.80		
TINCI	42.17	35.81	26.71	25.94	24.76	17.44		
	15.80	14.28	13.45	0.02i	0.08i	0.09i		
7. ND.	78.83	70.08	69.95	69.95	59.51	59.51		
ZINDI	35.25	25.15	20.34	20.34	15.90	14.30		
	14.30	9.90	9.90	0.00i	0.00i	0.02i		
	79.07	74.11	74.11	73.55	63.79	63.79		
HfNBr	27.42	23.03	15.47	15.47	15.43	12.62		
	12.62	9.67	9.67	0.00i	0.01i	0.01i		
	78.93	74.07	73.91	53.63	49.22	42.76		
TiNBr	33.84	32.51	27.68	25.63	17.03	13.30		
	10.89	10.02	7.39	0.01i	0.08i	0.11i		

Table S3. Monolayer phonon energy for TMNHs.

Material			Phonon Er	Phonon Energy (meV)							
	80.02	80.00	75.27	73.00	73.00	72.63					
	72.63	72.62	72.62	71.15	71.09	71.09					
	62.57	62.51	62.19	62.14	62.13	62.09					
	39.51	39.43	39.40	35.15	35.12	32.10					
ZrNCl	23.48	22.62	22.57	22.28	22.19	22.15					
	22.15	22.06	22.00	21.04	20.97	20.93					
	20.86	20.47	20.36	16.31	16.16	16.09					
	15.97	15.82	15.75	3.28	3.09	2.69					
	1.65	0.46	0.66	1.03i	2.31i	2.96i					
	80.12	80.12	77.56	77.56	77.56	77.56					
	77.56	77.56	75.24	74.46	74.46	74.45					
	67.40	67.40	67.39	67.39	67.39	67.39					
	34.83	34.42	34.42	33.35	33.35	30.30					
HfNCl	19.75	19.21	19.21	18.60	18.60	18.46					
	18.46	18.46	18.46	18.13	18.13	18.13					
	18.13	17.93	17.93	13.16	13.16	13.03					
	13.03	13.03	13.03	3.14	3.14	1.23					
	1.23	1.23	1.23	0.02i	0.02i	0.02i					
TINCI	79.82	76.95	74.20	56.57	49.82	49.28					
TINCI	43.10	35.81	26.30	24.51	24.21	15.78					
	15.27	14.31	11.77	0.02i	0.10i	0.16i					
	79.91	79.91	74.86	70.75	70.75	70.75					
	70.67	70.67	70.66	70.66	70.66	70.66					
	60.22	60.22	60.22	60.22	60.02	60.02					
ZrNB r	35.43	35.43	35.33	26.95	26.95	25.50					
ZINDI	20.39	20.39	20.36	20.36	20.36	20.36					
	19.53	18.91	18.91	16.90	16.90	16.90					
	16.90	16.73	16.73	14.24	14.24	14.11					
	14.11	14.11	14.11	6.81	6.81	5.56					
	5.56	5.56	5.56	1.33i	1.93i	1.93i					

Table S4. Bulk phonon energy for TMNHs.

Material	Phonon Energy (meV)						
	79.84	79.84	74.61	74.23	74.23	74.22	
	74.22	74.22	74.22	73.77	73.76	73.76	
	63.89	63.89	63.89	63.89	63.88	63.88	
	27.66	27.58	27.58	23.67	23.67	21.95	
HfNBr	16.34	15.72	15.72	15.56	15.56	15.55	
	15.55	15.55	15.55	12.86	12.86	12.86	
	12.86	12.78	12.78	9.96	9.96	9.81	
	9.81	9.81	9.81	3.04	3.04	1.14	
	1.14	1.14	1.14	0.01i	0.01i	0.01i	
	78.88	73.87	71.16	53.67	49.52	42.84	
TiNBr	33.64	32.05	27.91	25.90	17.99	13.52	
	10.86	10.84	8.32	0.00i	0.03i	0.14i	

Table S4 (Cont.). Bulk phonon energy for TMNHs.

Material	Monola	yer (ε_{∞})	Monola	yer (ε_0)	Bulk	(ε_{∞})	Bulk (ε_0)		
	Х	У	Х	У	Х	У	Х	У	
ZrNCl	6.23	6.23	15.85	15.85	6.24	6.24	15.64	15.72	
HfNCl	5.65	5.65	13.69	13.69	5.67	5.67	13.61	13.61	
TiNCl	15.54	9.89	157.26	35.31	16.13	10.10	159.31	36.00	
ZrNBr	6.69	6.69	15.30	15.30	6.72	6.72	14.87	14.88	
HfNBr	6.10	6.10	13.18	13.18	6.12	6.12	13.16	13.16	
TiNBr	16.70	10.27	128.04	35.07	17.16	10.42	132.22	35.20	

Table S5. In-plane dielectric constant components (x and y). Among six TMNH dielectrics materials, only TiNCl and TiNBr are anisotropic since the x and y components are considerably different.

Table S6. Bandgap and electron affinity values for TMNH materials in this study. Bandgap values are calculated by two methods: Perdew-Burke-Ernzerof (PBE) and Heyd–Scuseria–Ernzerhof (HSE). Electron affinity values are also calculated by HSE method.

Material	PBE Ban	d Gap (eV)	HSE Band Gap (eV)	Electron Affinity (eV)		
	Bulk	ulk Monolayer Monolayer		Monolayer		
ZrNCl	1.77	1.91	2.89	4.53		
HfNCl	2.19	2.37	3.36	4.07		
TiNCl	0.56	0.57	1.55	5.60		
ZrNBr	1.45	1.65	2.59	4.45		
HfNBr	1.83	2.03	2.99	4.01		
TiNBr	0.56	0.57	1.53	5.43		

Table S7. Bandgap and electron affinity values for TMDs. Bandgap values are calculated using Heyd–Scuseria– Ernzerhof (HSE). Electron affinity values are also calculated by HSE method.

Material	HSE Band Gap (eV)	Electron Affinity (eV)			
	Monolayer	Monolayer			
WSe_2	1.60	3.55			
WS_2	1.91	3.91			
$MoSe_2$	1.63	3.96			
MoS_2	1.97	4.30			
MoTe ₂	1.19	3.80			

Table S8. Leakage current values of TMNH dielectrics under study in combination with five TMDs for p-MOS applications. We listed hBN for the porous of comparison. TiNCl and TiNBr cannot insulate the current when they are combined with WSe₂ and WS₂ channel materials (shown by stars) due to their band alignment.

			Leakage Current	Density (A/cm ²)	
TMD	IMINH	Thermionic	Tunneling (VB)	Tunneling (CB)	Total
	ZrNCl	3.04×10 ⁻²⁶	2.63×10 ⁻²⁰	5.84×10^{3}	5.84×10^{3}
	HfNCl	2.11×10 ⁻²⁶	2.05×10 ⁻²⁰	3.63×10 ⁻²	3.63×10 ⁻²
	TiNCl	2.74×10 ⁻²¹	3.06×10 ⁻¹²	*	*
WSe ₂	ZrNBr	1.85×10 ⁻²⁰	4.49×10 ⁻¹⁵	4.10×10^{2}	4.10×10^{2}
	HfNBr	7.73×10 ⁻²⁰	1.76×10^{-14}	1.84×10 ⁻³	1.84×10 ⁻³
	TiNBr	1.08×10^{-18}	9.02×10 ⁻¹¹	*	*
	hBN	3.44×10 ⁻¹⁶	4.62×10^{2}	7.53×10 ⁻⁸	4.62×10^{2}
	ZrNCl	5.34×10 ⁻¹⁵	2.64×10 ⁻⁹	7.16×10 ⁻⁵	7.16×10 ⁻⁵
	HfNCl	5.72×10 ⁻¹⁵	2.12×10-9	1.19×10 ⁻¹¹	2.14×10 ⁻⁹
	TiNCl	4.82×10 ⁻¹⁰	1.66×10 ⁻³	3.02×10^{7}	3.2×10^{7}
WS_2	ZrNBr	3.26×10 ⁻⁹	1.38×10^{-4}	8.50×10 ⁻⁷	1.39×10 ⁻⁴
	HfNBr	1.36×10 ⁻⁸	4.20×10 ⁻⁴	1.10×10 ⁻¹³	4.20×10 ⁻⁴
	TiNBr	1.90×10 ⁻⁷	5.64×10 ⁻²	1.46×10^{6}	1.46×10 ⁻⁶
	hBN	6.06×10 ⁻⁵	1.68×10^{5}	9.53×10 ⁻¹²	1.68×10^{5}
	ZrNCl	7.37×10 ⁻¹⁹	7.13×10 ⁻¹³	7.01×10 ⁻²	7.01×10 ⁻²
	HfNCl	5.13×10 ⁻¹⁹	5.67×10 ⁻¹³	3.68×10 ⁻⁸	3.68×10 ⁻⁸
	TiNCl	6.65×10 ⁻¹⁴	2.56×10 ⁻⁶	*	*
$MoSe_2$	ZrNBr	4.50×10 ⁻¹³	6.09×10 ⁻⁸	1.56×10 ⁻³	1.56×10 ⁻³
	HfNBr	1.88×10 ⁻¹²	2.03×10 ⁻⁷	6.28×10 ⁻¹⁰	2.04×10 ⁻⁷
	TiNBr	2.61×10 ⁻¹¹	8.80×10 ⁻⁵	6.53×10 ⁷	6.53×10 ⁷
	hBN	4.19×10 ⁻⁴	2.51×10^{5}	2.23×10 ⁻¹⁰	2.51×10^{5}
	ZrNCl	1.91×10 ⁻⁷	5.13×10 ⁻³	1.88×10 ⁻¹¹	5.13×10 ⁻³
	HfNCl	1.33×10 ⁻⁷	4.23×10 ⁻³	4.03×10 ⁻¹⁹	4.23×10 ⁻³
	TiNCl	1.72×10 ⁻²	1.21×10^{2}	1.14×10^{4}	1.15×10^{4}
MoS_2	ZrNBr	1.17×10^{-1}	7.42×10^{1}	6.10×10 ⁻¹⁴	7.43×10^{1}
	HfNBr	4.86×10 ⁻¹	1.83×10^{2}	1.06×10 ⁻²¹	1.83×10^{2}
	TiNBr	4.77	3.30×10^{3}	1.36×10^{2}	3.44×10^{3}
	hBN	2.17×10^{3}	5.16×10^{6}	1.61×10 ⁻¹⁴	5.16×10 ⁶
	ZrNCl	7.74×10 ⁻¹⁶	4.63×10 ⁻¹⁰	1.84×10^{5}	1.84×10^{5}
	HfNCl	5.39×10 ⁻¹⁶	3.71×10 ⁻¹⁰	3.14	3.14
	TiNCl	4.98×10 ⁻¹¹	4.23×10 ⁻⁴	*	*
MoTe ₂	ZrNBr	4.72×10 ⁻¹⁰	2.72×10 ⁻⁵	1.92×10^{4}	1.92×10^{4}
	HfNBr	1.97×10 ⁻⁹	8.42×10 ⁻⁵	2.31×10 ⁻¹	2.31×10 ⁻¹
	TiNBr	2.74×10 ⁻⁸	1.45×10 ⁻²	*	*
	hBN	7.10×10 ⁻¹⁹	9.87×10^{1}	5.82×10 ⁻⁷	9.87×10^{1}

Tabl	le S9. Co	omparis	son of	band	gaps,	, elec	ctron a	ffini	ties, an	<mark>d polariza</mark> t	oility	y betwee	en val	ues calc	ulated	l in	this s	tudy
and	extracted	d from	Ref.	[35].	We	also	added	the	values	calculated	in	several	other	studies	for th	ne p	urpos	se of
com	<mark>parison.</mark>																	

Material	HSI	E Band Gap (eV)	Electron Af	finity (eV)	Polarizability (Å)		
	Our Study	C2DB	Others	Our Study	C2DB	Our Study	C2DB	
			2.87 [1],					
ZrNCl	2.89	3.08	2.93 [2],	4.53	4.35	0.59	0.59	
			2.70 [3]					
HfNCl	3.36	3.45	3.37 [2]	4.07	3.99	0.59	0.51	
TiNCl	1 55	2.09	1.41 [4],	5 60	4 89	0.50	0.50	
inter	1.00	2.09	1.41 [5]	2.00	1109	0.20	0.00	
ZrNBr	2.59	2.76	2.60 [1],	4.45	4.21	0.65	0.59	
211 (21	,		2.52 [3]			0.02	0.57	
HfNBr	2.99	3.05	-	4.01	3.88	0.65	0.57	
TiNBr	1.53	2.08	1.39 [4],	5.43	4.68	0.55	0.54	
			1.39 [5]					

TMD	TMNH	Lattice Mismatch (%)
	ZrNCl	8.78
	HfNCl	7.81
MG	TiNCl	1.04
wSe_2	ZrNBr	9.80
	HfNBr	8.80
	TiNBr	2.00
	ZrNCl	12.39
	HfNCl	11.45
WS ₂	TiNCl	2.96
	ZrNBr	13.37
	HfNBr	12.40
	TiNBr	5.87
	ZrNCl	12.66
	HfNCl	11.73
MoSee	TiNCl	3.26
10502	ZrNBr	13.64
	HfNBr	12.68
	TiNBr	6.17
	ZrNCl	8.23
	HfNCl	7.25
MoSe	TiNCl	1.65
W1052	ZrNBr	9.25
	HfNBr	8.25
	TiNBr	1.40
	ZrNCl	1.29
	HfNCl	0.24
MoTec	TiNCl	9.33
10102	ZrNBr	2.40
	HfNBr	1.32
	TiNBr	6.04

Table S10. Lattice mismatch between five TMDs used in this study and six TMNHs.

References

[1] Hao, Qi-Dong, et al. "Quasiparticle band structures and optical properties of monolayer ZrNX (X= Cl, Br, I) under exciton effect." Solid State Communications 322 (2020): 114049, doi: 10.1016/j.ssc.2020.114049.

[2] Yun, Won Seok, and Jae Dong Lee. "Two-dimensional semiconductors ZrNCl and HfNCl: Stability, electric transport, and thermoelectric properties." Scientific reports 7.1 (2017): 1-9, doi: 10.1038/s41598-017-17590-w.

[3] Wiebeler, Hendrik. A linear scaling DFT-Method and high-throughput calculations for p-type transparent semiconductors. Diss. Universitätsbibliothek, 2020.

[4] Liang, Yan, et al. "Novel titanium nitride halide TiNX (X= F, Cl, Br) monolayers: potential materials for highly efficient excitonic solar cells." Journal of Materials Chemistry A 6.5 (2018): 2073-2080, doi: 10.1039/C7TA09662C.

[5] Zhou, Liujiang, et al. "Computational dissection of two-dimensional rectangular titanium mononitride TiN: auxetics and promises for photocatalysis." Nano letters 17.7 (2017): 4466-4472, doi: 10.1021/acs.nanolett.7b01704.

[6] Tian, Tian, et al. "Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials." Nano letters 20.2 (2019): 841-851, doi: 10.1021/acs.nanolett.9b02982.