Suppressing vanadium dissolution of V_2O_5 via in situ polyethylene glycol intercalation towards ultralong lifetime room/low-temperature zinc-ion batteries

Chunfa Lin,^a Fenqiang Qi,^b Huilong Dong,^a Xiao Li,^a Chunping Shen,^c Edison Huixiang Ang,^d Yuqiang Han,^{a*} Hongbo Geng,^{a*} Cheng Chao Li^{e*}

^aSchool of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China

^bCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

^cJiangsu Tenpower Lithium Co., Ltd., Zhangjiagang, Jiangsu, China

^dNatural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore

^eSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

Figure S1. FTIR spectra of PEG, PEG-V₂O₅ and raw V_2O_5 .

Figure S2. The TG curves of PEG-V₂O₅.

Figure S3. (a, b) SEM images of HVO.

Figure S4. Comparison of the rate capability of the PEG- V_2O_5 with other previously reported ZIBs cathodes.

Figure S5. Galvanostatic charge-discharge profiles during different cycling numbers at 10.0 A g⁻¹.

Figure S6. Separation of the capacitive and diffusion-controlled current contribution at different scan rates.

Figure S7. Zinc-ion storage performance of PEG-V₂O₅ electrode at a low temperature of -10 °C: (a) The charge-discharge curves and (b) cycling performance at 0.5 $A \cdot g^{-1}$.

Figure S8. Long cycling performance of PEG-V₂O₅ electrode at a low temperature of -10 °C at 2.0 A g⁻¹.

Cathode Materials	$D_{Zn^{2}+(cm^{2} s^{-1})}$	Ref.
PEG-V ₂ O ₅	$10^{-9} \sim 10^{-11}$	This work
$Mn_{0.15}V_2O_5{\scriptstyle\bullet}nH_2O$	$10^{-10} \sim 10^{-12}$	[9]
α -MnO ₂	$10^{-12} \sim 10^{-17}$	[2]
LiFePO ₄	$10^{-15} \sim 10^{-19}$	[10]
MnO ₂ nanospheres	$10^{-12} \sim 10^{-15}$	[11]
δ-MnO ₂	$10^{-12} \sim 10^{-15}$	[12]
PANI-VOH	$10^{-13} \sim 10^{-16}$	[3]
$Al_{0.2}V_2O_5$	$10^{-12} \sim 10^{-13}$	[13]

Table S1. Comparison of the diffusion coefficient $\binom{D}{Zn^{2}}$ with other reported cathode materials.

References:

S1. V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro, J. Jo, S.

Kim, V. Mathew, Y.K. Sun and J. Kim, Nano Lett., 2018, 18, 2402-2410.

S2. B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu and L. Mai, *Small*, 2018, 14, 1703850.

S3. M. Wang, J. Zhang, L. Zhang, J. Li, W. Wang, Z. Yang, L. Zhang, Y. Wang, J. Chen, Y. Huang, D. Mitlin and X. Li, ACS Appl. Mater. Interfaces, 2020, 12, 31564-31574.

S4. F. Wan, S. Huang, H. Cao and Z. Niu, ACS Nano, 2020, 14, 6752-6760.

S5. T. Wei, Q. Li, G. Yang, C. Wang, J. Mater. Chem. A, 2018, 6, 20402-20410.

S6. Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan and S. Liang, *Energy Storage Mater.*, 2018, **13**, 168-174.

S7. B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfaruqi, J. Jo, S. Kim, V.

Mathew, Y.K. Sun and J. Kim, J. Mater. Chem. A, 2018, 6, 15530-15539.

S8. B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang and S. Liang, *Nano Energy*, 2018, 51, 579-587.

S9. H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang and C.C. Li, *Adv. Funct. Mater.*, 2019, **30**, 1907684.

S10. K. Tang, X. Yu, J. Sun, H. Li and X. Huang, *Electrochim. Acta*, 2011, **56**, 4869-4875.

S11. J. Wang, J.-G. Wang, H. Liu, C. Wei and F. Kang, *J. Mater. Chem. A*, 2019, **7** 13727-13735.

S12. C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu and Y. Qian, *Electrochim. Acta*, 2019, **304**, 370-377.

S13. Q. Pang, W. He, X. Yu, S. Yang, H. Zhao, Y. Fu, M. Xing, Y. Tian, X. Luo and Y. Wei, *Appl. Surf. Sci.*, 2021, 538, 148043.