Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

SnS₂-SnS pn hetero-junction bonded on graphene with boosted charge transfer

for lithium storage

Jie Wang, ^{ab} Zijia Zhang ^a and Hailei Zhao ^{*ab}

^a School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing 100083, China.

^b Beijing Municipal Key Laboratory of New Energy Materials and Technologies,

Beijing 100083, China

Fig. S1 TG and DTG curves of SnS₂-SnS/rGO composite.

In the DTG curve, there are two prominent peaks located at \sim 390 °C and \sim 510 °C, which are attributed to the oxidation of SnS₂ to SnO₂ and the combustion of graphene.¹

Fig. S2 FESEM images of SnS₂-SnS/rGO sample.

Fig. S3 Charge-discharge voltage profiles of SnS₂-SnS/rGO electrode at 0.1 A g⁻¹ for lithium storages.

Fig. S4 Charge/discharge curves of SnS₂-SnS/rGO electrode.

Fig. S5 Contribution ratio of the diffusion-controlled and capacitive capacities of SnS_2-SnS/rGO sample at different scan rates.

Fig. S6 CV curves of SnS_2/rGO with separation between total current (blue line) and surface capacitive current (orange line) at a scan rate of 0.1 mV s⁻¹.²

Fig. S7 Nyquist plots of SnS_2 -SnS/rGO electrode in the range of 0.1 Hz to 10^6 Hz.

Fig. S8. FESEM images of SnS_2 -SnS/rGO electrode (a) before and (b) after cycling for 100 cycles at a current density of 1 A g⁻¹.

References

1. J. Huang, K. Yu, C. Gu, M. Zhai, Y. Wu, M. Yang and J. Liu, Sens. Actuators B, 2010, 147, 467-474.

2. Z. Zhang, H. Zhao, J. Fang, X. Chang, Z. Li and L. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 28533-28540.