Supporting Information

Ionic liquid-induced in-situ deposition of perovskite quantum dot films with photoluminescence quantum yield over 85%

Qiugui Zeng,^{a,b} Xin Luo,^{a,b} Yiying Du,^b Jiexuan Jiang,^{a,b} Lin Yang,^c Hui Zhao,^c Heping Shi,^d Yanbo Li ^{a,b,*}

^aYangtza Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

^bInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

°School of Chemical Engineering, Sichuan University, Chengdu 610065, China

^dSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China

*Corresponding Author: <u>yanboli@uestc.edu.cn</u>

Fig. S1 Absolute PLQY measurement of polycrystalline perovskite film (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d) and 100% BMIMBF₄-induced QD film (e).

Fig. S2 (a) TEM image of conventional CsPbBr₃ QD ink solution. (b) Histogram of QD size in a. (c) Absorption and PL spectra of conventional CsPbBr₃ QD ink solution.

Fig. S3 (a) Normalized PL spectra of QD ink solution and consequently deposited QD ink film. (b) Absolute PLQY measurement of the conventional QD ink film.

Fig. S4 SEM images of the polycrystalline perovskite film (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d), and 100% BMIMBF₄-induced QD film (e). The inset in a-e show high-magnification SEM images of the respective sample.

Fig. S5 TEM images of the polycrystalline perovskite sample (a), 25% BMIMBF₄induced QD sample (b), 50% BMIMBF₄-induced QD sample (c), 75% BMIMBF₄induced QD sample (d) and100% BMIMBF₄-induced QD sample. The insets in a-e show the histogram of grain/QD size for the respective sample.

Fig. S6 The photograph of CsBr•DMSO, PbBr₂•DMSO, CsBr•BMIMBF₄•DMSO, PbBr₂•BMIMBF₄•DMSO and BMIMBF₄•DMSO solutions. The red circle marks the undissolved CsBr in DMSO.

Fig. S7 (a) FTIR spectra of CsBr•DMSO, PbBr₂•DMSO, CsBr•BMIMBF₄•DMSO, PbBr₂•BMIMBF₄•DMSO and BMIMBF₄•DMSO solutions. The red rectangles represent the characteristic peaks of BMIMBF₄ ionic liquid, the spades represent the characteristic peaks of perovskite precursor. (b) The magnification of a in the range of 1200 cm⁻¹ to 1140 cm⁻¹.

Fig. S8 (a) ¹H NMR spectra of the BMIMBF₄, BMIMBF₄·CsBr·DMSO, BMIMBF₄· PbBr₂·DMSO, BMIMBF₄·CsBr·PbBr₂·DMSO, CsBr·PbBr₂·DMSO samples in the dimethyl sulfoxide- d_6 . (b) The magnification of a in the range of 9.5 to 7.0 ppm, the inset shows the structure of the BMIMBF₄.

As shown in Fig. S8, the butyl chain (-CH) attached on imidazolium ring in the range from 1.76 to 0.88 ppm remain unchanged in the BMIMBF₄-contained samples and the features originated from the a-CH and b-CH of imidazolium ring show higher upfield shift the BMIMBF₄•CsBr•DMSO, in BMIMBF₄•PbBr₂•DMSO, BMIMBF₄•CsBr•PbBr₂•DMSO samples. This result indicates the presence of the high shield effect in the a-CH and b-CH of imidazolium ring for BMIMBF₄•CsBr•DMSO, BMIMBF4•PbBr2•DMSO, BMIMBF4•CsBr•PbBr2•DMSO samples, due to the interaction between the acidic hydrogen from imidazolium ring and electronegative halides. Besides, we noticed that the c-CH of imidazolium ring had no or slight shift in the BMIMBF₄-contained samples, these results demonstrate that the a-CH and b-CH of imidazolium ring prefer to interact with the electronegative halides other than the c-CH of imidazolium ring. Therefore, we conclude that the ¹H NMR results are consistent with the FTIR results

Fig. S9 XPS spectra of the polycrystalline perovskite film (without BMIMBF₄ IL) and 75% BMIMBF₄-induced perovskite QD film (with BMIMBF₄ IL), (a)survey, (b) F 1s, (c) Pb 4f and (d) Br 3d.

Fig. S10 (a) Absorption spectra of CsBr, PbBr₂, BMIMBF₄•PbBr₂, BMIMBF₄•CsBr films and BMIMBF₄ ionic liquid. (b) XRD patterns of CsBr, PbBr₂, BMIMBF₄•PbBr₂ and BMIMBF₄•CsBr film.

Fig. S11 XRD patterns of samples with different BMIMBF₄ concentrations (from 0% to 100%).

Fig. S12 Ln (α) vs photon energy for samples with different BMIMBF₄ concentrations. The E_u values are obtained from the slope of the fitted curves.

Fig. S13 PL spectra recorded with excitation density from 1.32 mW/cm²to 98.43 mW/cm² for 0% BMIMBF₄-induced QD film (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d) and 100% BMIMBF₄-induced QD film (e).

Fig. S14 Temperature-dependent PL spectra of the 25% BMIMBF₄-induced QD film in the range of 10 to 300 K.

Fig. S15 Temperature-dependent PL spectra of the 50% BMIMBF₄-induced QD film in the range of 10 to 300 K.

Fig. S16 Temperature-dependent PL spectra of the 100% BMIMBF₄-induced QD film in the range of 10 to 300 K.

Fig. S17 Normalized PL spectra measured under different excitation intensity at 10 K for the polycrystalline perovskite film (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d) and 100%

BMIMBF₄-induced QD film (e).The actual laser intensities under different neutral density filters (0.1-100%) are measured to be 0.19 mW/cm² (0.1%), 1.32 mW/cm² (1%), 11.86 mW/cm² (10%), and 98.43 mW/m² (100%).

Fig. S18 Peak fittings for low-temperature PL spectra measured at 10 K under a laser intensity of 0.19 mW/cm² for the polycrystalline perovskite film (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d) and 100% BMIMBF₄-induced QD films (e).

Fig. S19 Low temperature PL spectra of samples with different BMIMBF₄ concentrations (from 0 to 100%) at 10 K under a laser intensity of 0.19 mW/cm^2 .

Fig. S20 Integrated PL intensity vs inverse of temperature for the polycrystalline perovskite (a), 25% BMIMBF₄-induced QD film (b), 50% BMIMBF₄-induced QD film (c), 75% BMIMBF₄-induced QD film (d) and 100% BMIMBF₄-induced QD films (e). The curves are fitted by Arrhenius equation to obtain the E_b values.

Fig. S21 Temporal evolution of PL spectra of the polycrystalline perovskite film stored in air with RH around 45%.

Fig. S22 XRD patterns of samples exposed to air for 0 day and 43 days for the polycrystalline perovskite film (a) and the 75% BMIMBF₄-induced QD film (b).

Fig. S23 TEM images of samples exposed to air for 43 days: (a) the polycrystalline perovskite sample, (b) the 75% BMIMBF₄-induced QD sample.

Sample	$ au_{free}$	Afree	τ_{bound}	$\mathbf{A}_{\mathbf{bound}}$	β	$<\tau_{bound}>(ns)$	< \tau> (ns)
0%	12.28	0.02	0.89	0.98	0.435	2.39	3.3
25%	11.05	0.20	38.45	0.80	0.462	89.97	87.6
50%	5.37	0.21	29.40	0.79	0.494	60.14	58.9
75%	3.98	0.22	20.87	0.78	0.597	31.64	30.7
100%	4.99	0.18	25.76	0.82	0.600	38.76	37.8

 Table S1. Fitting parameters of TRPL decay curves and the calculated average lifetimes.

Note: the TRPL decay curve is fitted by the thermalized stretching exponential decay:¹

$$I = A_{free} \exp\left(-\frac{t}{\tau_{free}}\right) + A_{bound} \exp\left(-\left(\frac{t}{\tau_{bound}}\right)^{\beta}\right)$$

The average lifetime of the stretched exponential decay $< \tau_{\text{bound}} >$ is obtained according to the following equation:

$$< au>=rac{ au_{bound}}{eta}*r(rac{1}{eta})$$

where $\Gamma\left(\frac{1}{\beta}\right)$ is the gamma function.^{2, 3}

The total average lifetime of time-resolved PL decay curve is obtained according to the following equation:

$$<\tau>=\frac{I_{1}*\tau_{1}^{2}+I_{2}*<\tau_{2}>^{2}}{I_{1}*\tau_{1}+I_{2}*<\tau_{2}>}$$

References

1 H. He; Q. Yu; H. Li; J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang and Z. Ye, Exciton Localization in Solution-Processed Organolead Trihalide Perovskites, *Nat. Commun.*, 2016, **7**, 10896.

2 C. P. Lindsey and G. D. Patterson, Detailed Comparison of the Williams–Watts and Cole–Davidson Functions, *J. Che. Phys.*, 1980, **73**, 3348-3357.

3 D. W. deQuilettes, S. Koch, S. Burke, R. K. Paranji, A. J. Shropshire, M. E. Ziffer, D. S. Ginger, Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation, *ACS Energy Lett.*, 2016, **1**, 438-444.