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Additional methodological details

oxDNA simulations We used the oxDNA
coarse-grained model1,2 (Fig. S1) to per-
form molecular dynamics simulations of the
DNA nanostructures. We used the second-
generation version of the model (sometimes
called “oxDNA2”);3 one of the improvements
in this version of the model was a tuning of
the potential parameters to better reproduce
the structures of large DNA nanostructures.
As we are concerned here with the fundamen-
tal properties of the free-energy landscapes
and not any potential sequence dependence to
them, we used the sequence-averaged version
of the model in which the strength of the in-
teractions are independent of the identity of
the nucleotides involved (note base pairing still
can only occur between complementary nu-
cleotides).

Simulations were performed at 300 K using a
Langevin thermostat. The time-step used was
0.005 in the internal simulation units of the
oxDNA code, which corresponds to 15 fs. The
solvent environment is treated implicitly as a
dielectric continuum. We use a salt concentra-
tion of [Na+] = 1.0 M, which provides a reason-
able representation of the high salt conditions
typically used for DNA nanotechnology. Due to
large system sizes, we use the GPU implemen-
tation of the oxDNA simulation code.4
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Figure S1: (a) An oxDNA nucleotide along with
the “base” and “normal” vectors used to define
its orientation. (b) A nicked double helix with
12 base pairs. (c) A close-up of the double he-
lix illustrating some of the interactions in the
oxDNA model.

To apply umbrella sampling in molecular dy-
namics simulations it is necessary to compute
the contributions to the forces arising from the
umbrella potential. This is straightforward for
the continuous distance-based order parameters
and the harmonic umbrella potentials that we
use here.

Generating starting configurations We
converted the caDNAno design files of the
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origamis into oxDNA format using the
tacoxDNA package.5 The converted configu-
rations cannot serve as starting configurations
for molecular dynamics simulations because
of nucleotides experiencing large forces due to
particle overlaps or extended bonds. Therefore,
the potential energy of these configurations is
first minimized for 200 steps using a steepest-
descent algorithm, and then the configurations
are relaxed in a molecular dynamics simula-
tion using a modified backbone potential for
106 steps. After that, the extended bonds have
typically returned to their normal lengths, and
the configurations are ready for simulation us-
ing the standard oxDNA force field. All designs
were equilibrated for a further 108 steps, corre-
sponding to about 1.5 µs.

Nanotube

1D Umbrella Sampling We used umbrella
sampling6 to calculate the free-energy land-
scape as a function of the order parameter Ree,
the end-to-end distance of the nanotube. To
avoid “end” effects associated with the greater
splaying of the helices at the nanotube ends and
their larger fluctuations, we defined the end-to-
end distance as the distance between the cen-
tres of mass of two groups of nucleotides that
are slightly in from the ends. For design 1, the
two groups contain the nucleotides at positions
44–64 and 1010–1030 respectively. For designs
2 and 3, the two groups contain the nucleotides
at positions 49–69 and 1204–1224 respectively.
These nucleotides are highlighted in Fig. 1(a).
The nucleotide positions are as defined in the
caDNAno design (Fig. S2).

For each nanotube design, we performed a set
of simulations where the order parameter was
restrained with a harmonic potential in each
sampling window. The range was from Ree = 0
to Ree ≈ 1.02Lapprox

c , where Lapprox
c is an es-

timate of the contour length of the nanotube
that is obtained by multiplying the number of
base pairs along the nanotube between the two
centres of mass of the groups of nucleotides by
the rise per base pair (0.34 nm).

Before performing the umbrella sampling sim-
ulations, we first prepared starting configura-

tions for each window using non-equilibrium
“pulling” simulations. Starting from an equili-
brated configuration restrained at Ree = Lapprox

c

with a harmonic bias potential of stiffness k =
57.09 pN/nm, the bent configurations were gen-
erated by gradually reducing the equilibrium
position of the harmonic bias potential at a
constant rate such that it reached zero after
108 steps. Configurations were outputted every
2 × 105 steps, resulting in a total of 500 con-
figurations that were then used as the starting
configurations for the same number of equally-
spaced windows from Ree = 0 to Ree = Lapprox

c .
Similarly, for the stretched configurations, the
equilibrium position of the harmonic potential
was gradually increased at the same constant
rate as above, until the nanotube was no longer
stable. Configurations were also outputted ev-
ery 2× 105 steps, resulting in a total of 28, 27,
and 37 configurations for designs 1, 2 and 3, re-
spectively, that were used as the starting con-
figuration of the same number of equally-spaced
umbrella sampling windows.

The above configurations were then used as
starting points for simulations in which the con-
figurations were constrained by a harmonic um-
brella potential of stiffness kee = 17.12 pN/nm
centred at the value of Ree corresponding to
that window. The value of kee was chosen
so that the probability distributions of Ree for
adjacent windows had significant overlap (Fig.
S3). Each window was equilibrated for 106

steps before a production run of 107 steps.
Ree was outputted every 103 steps, giving 104

data points for each window. Using the biased
probability distributions of Ree in each win-
dow, we used the Weighted Histogram Analysis
Method (WHAM)7,8 to calculate the unbiased
free-energy landscape of the system as a func-
tion of Ree.

The production runs were then repeated with
the last configuration of the previous produc-
tion run, and WHAM was performed on the
new data to calculate the free-energy landscape
again. This process was repeated until the
new free-energy landscape was not statistically
different from the previously calculated free-
energy landscape. For the nanotubes consid-
ered here, four sets of production runs were
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Figure S2: Full caDNAno designs for the three DNA nanotubes.
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Figure S3: (a) Examples of the umbrella potentials Vi(Ree) used for three windows for the bending
of a DNA nanotube (design 1), and the probability distributions for those windows pi(Ree). i is
the index of the umbrella sampling window. (b) From each probability distribution an estimate of
the free-energy Ai(Ree) can be obtained that will be most accurate for those Ree values that are
most well sampled in that simulation. If there is significant overlap between adjacent probability
distributions an accurate best estimate of the overall free-energy landscape can be obtained using
WHAM, as illustrated.

needed for convergence.

2D Umbrella Sampling To improve sam-
pling in the transition region between the
kinked and unkinked states of the nanotube,
two-dimensional umbrella sampling was per-
formed for design 1. The order parameters
were chosen to be Ree, the end-to-end distance
of the nanotube defined previously, and Rqq,
the distance between points one quarter and
three quarters along the nanotube from the end
points used for Ree. Specifically, Rqq is defined
as the distance between the centres of mass of
another two groups of nucleotides, namely those
nucleotides at positions 285–305 and 768–788,
respectively. The nucleotide positions are as
defined in the caDNAno design.

The sampling region chosen ranges from
Ree = 148.0 nm to Ree = 190.7 nm, and Rqq =
93.7 nm to Rqq = 139.7 nm. Windows along
Ree had a spacing of 0.658 nm, which is the
same as that used for the one-dimensional sam-

pling, and windows along Rqq had a spacing of
1.70 nm.

The final equilibrated configurations from the
corresponding Ree windows in the 1D umbrella
sampling simulations were used as the start-
ing configuration for each window. The sim-
ulations for each window were constrained by a
two-dimensional harmonic potential centred at
the values of Ree and Rqq corresponding to that
window. The harmonic bias potential had stiff-
ness kee = 17.12 pN/nm and kqq = 1.71 pN/nm
in the Ree and Rqq coordinates, respectively.
Each window was equilibrated for 5× 106 steps
before a production run of 5× 106 steps. After
the production run, two-dimensional WHAM8,9

was performed to calculate the free-energy land-
scape in the transition region.

Combining 1D and 2D umbrella sam-
pling To combine the free-energy landscape
from one- and two-dimensional umbrella sam-
pling of the SST design, we also recorded
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Rqq in the one-dimensional sampling runs, but
without any bias on this order parameter.
We performed two-dimensional WHAM on the
whole data set, but excluding the data from
the one-dimensional sampling that overlapped
with that from the two-dimensional sampling.
The two-dimensional free-energy landscape was
then projected onto Ree to produce the new es-
timate of the one-dimensional landscape that is
shown in Fig. 1.

Stretching We calculated the force-extension
curve, F (z), from our free-energy landscape,
A(Ree), using the following approach. Firstly,
F (z) can be related to P (z) the probability
distribution function for z:

F (z) = −dA(z)

dz

= −d(−kBT lnP (z))

dz

= kBT
d lnP (z)

dz
,

where A(z) is the free energy as a function of
z. Secondly, P (z) can be related to P (r) the
probability distribution function of r

P (z)

=
dC(z)

dz

=
d

dz

(
1−

∫ 2π

0

∫ arccos( z
r
)

0

∫ ∞
z

P (r)r2 sin θdrdθdφ

)

=
d

dz

∫ ∞
z

P (r)2πr2
(z
r
− 1
)
dr

=

∫ ∞
z

P (r)2πrdr,

where C(z) denotes the cumulative distribution
function for z. Finally, P (r) can be related to
A(Ree):

P (r) =
1

4πr2
exp

(
−A(Ree)

kBT

)
.

Nanotube radius The average nanotube ra-
dius was calculated by averaging the radius at
each slice (defined as the set of nucleotides with
the same base-pair index in the caDNAno file)

along the nanotube, where each slice is sepa-
rated by a single base-pair step:

〈rnanotube〉 =
1

Nslice

Nslice∑
i=1

rnanotube(i).

The radius of the nanotube at a given slice is
calculated by averaging the distances from the
centre of each double helix to the centre of the
nanotube for that slice:

rnanotube(i) =
1

Nhelix

Nhelix∑
j=1

|Rduplex,j(i)−Rnanotube(i)| ,

where the nanotube centre is simply defined as

Rnanotube(i) =
1

Nhelix

Nhelix∑
j=1

Rduplex,j(i).

Following Ref. 10 the centre of a double helix,
Rduplex, is defined as

Rduplex =
1

2
(rnuc1 + rnuc2)

+
α

2

(
b̂nucl × n̂nuc1 + b̂nuc2 × n̂nuc2

)
where r, b̂, n̂ are the centre of mass position,
the base unit vector, and the normal unit vector
of the oxDNA nucleotide (Fig. S1), respectively,
and α = 0.06 (in the oxDNA simulation unit of
length). The second term is a correction factor
that takes into account that the centre of mass
of the two nucleotides in an oxDNA base pair
is slightly displaced towards the minor groove.

Relaxation of a bent nanotube For all
three designs, an equilibrated configuration
from the last umbrella sampling window (Ree =
0) was used as the starting point. With the bi-
asing umbrella potential removed the configura-
tion was free to relax back to equilibrium with
Ree being used to monitor this relaxation. The
simulation was run until the nanotube returned
to its normal, relaxed length.
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Origami sheets

2D Umbrella Sampling We used two-
dimensional umbrella sampling to calculate the
free-energy landscape as a function of the order
parameters R1 and R2, the two diagonal dis-
tances of the sheet. To avoid effects associated
with the greater splaying of the helices at the
edges of the sheet and the larger fluctuations at
the corners, we defined each diagonal distance
as the distance between the centres of mass of
two groups of nucleotides that are slightly in
from the corners. For the single-layer sheet, R1

is the distance between nucleotides in helices
2–3 and positions 72–103, and those in helices
20–21 and positions 264–295; R2 is the dis-
tance between nucleotides in helices 20–21 and
positions 72–103, and those in helices 2–3 and
positions 264–295. For the double-layer sheet,
R1 is the distance between nucleotides in helices
4–7 and positions 48–63, and those in helices
42–45 and positions 256–271; R2 is the dis-
tance between nucleotides in helices 42–45 and
positions 48–63, and those in helices 4–7 and
positions 256–271. The helices and nucleotide
positions are as defined in the caDNAno design
(Fig. S4).

For each sheet design, we performed a set of
simulations where the order parameters were re-
strained with a harmonic potential in each sam-
pling window. The sampled ranges of the order
parameter were from R1 = 0 to R1 = Rmax and
R2 = 0 to R2 = Rmax, where Rmax is the diago-
nal distance when the sheet is flat.

Before the umbrella sampling simulations, we
prepared starting configurations for each win-
dow using pulling simulations. The sheets were
first stretched diagonally outwards until they
were flat to remove any initial bias towards the
preferred curvature. Then, R1 was restrained
at Rmax with a harmonic bias potential of stiff-
ness k = 57.09 pN/nm. The equilibrium posi-
tion of the harmonic bias potential was grad-
ually reduced at a constant rate such that it
reaches zero after 108 steps. R2 was similarly
restrained during the pulling, but at a con-
stant value of Rmax. Configurations were out-
putted every 106 steps, resulting in a total of
100 configurations. From each of these configu-

rations, a similar pulling simulation was per-
formed on R2 while R1 was restrained at a
constant value corresponding to that configura-
tion. These pulling simulations generated start-
ing configurations for 10 000 windows, each rep-
resenting a point (R1, R2) on a square grid of
100 equally-spaced R1 and R2 values that run
from 0 to Rmax.

After the starting configurations had been
prepared, the simulations in each window were
constrained by a 2-dimensional harmonic bias
potential of stiffness k = 17.12 pN/nm centred
at the value of R1 and R2 corresponding to that
window. Each window was equilibrated for 106

steps before a production run of 106 steps. R1

and R2 was outputted every 103 steps, giving
103 data points for each window. The rela-
tively short simulations were justified by the
quick convergence of the data. For a smaller
part of the landscape, we found that running
the simulations for 10 times longer did not sig-
nificantly alter the landscape.

Using the biased probability distributions of
R1 and R2 in each window, we used 2D WHAM
to calculate the unbiased free-energy landscape
of the system. In total, 7500 windows were used
for generating the free-energy landscape. Win-
dows where both R1 and R2 are smaller than
Rmax/2 were discarded because the configura-
tions were too strained and severely deformed.

Curvature analysis The surface of the
origami sheet can be represented paramet-
rically in terms of the helix index (h) and
base pair index (b) in the caDNAno de-
sign. Mathematically, the surface is given by
r(h, b) = (X(h, b), Y (h, b), Z(h, b)), where X,
Y and Z are the splines of the respective co-
ordinates fitted as a function of h and b. The
principal curvatures, κ1 and κ2, are the mini-
mum and maximum values of the curvature at
a given point on the surface. The mean cur-
vature is given by H = (κ1 + κ2)/2 and the
Gaussian curvature by K = κ1κ2.

To calculate these quantities at a given point

5
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Figure S4: Full caDNAno designs for the single-layer and double-layer DNA origami sheets.

(h, b) on the sheet, we use the formulae11

H =
EN − 2FM +GL

2(EG− F 2)

K =
LN −M2

EG− F 2

where

E = rh · rh, F = rh · rb,
G = rb · rb, L = rhh · n̂,
M = rhb · n̂, N = rbb · n̂,

and

rh =
∂r

∂h
, rb =

∂r

∂b
,

rhh =
∂2r

∂h2
, rhb =

∂2r

∂h∂b
,

rbb =
∂2r

∂b2
, n̂ =

rh × rb

|rh × rb|
.

For each system, the curvature calculations
were done on a configuration averaged over an
unbiased simulation trajectory started from the
relevant free-energy minimum.
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Twist measurement To measure the twist
of the sheets we employ a similar approach to
that used to define the distances R1 and R2. We
define vectors along the edges of either end of
the sheet, and then measure the angle between
those vectors after projection onto a plane per-
pendicular to a vector running along the cen-
tre of the sheet. Specifically, we use the same
four centre-of-mass coordinates that were used
to define R1 and R2 to define the ends of our
edge vectors. The vector joining the midpoints
of these two edge vectors is then used to define
the vector along the centre of the sheet. As with
R1 and R2 these positions are defined slightly
in from the corners to avoid effects due to the
greater splaying of the helices near the edges.

Further results

Kinking pathway Figure S5 provides exam-
ple configurations illustrating the transition be-
tween the unkinked and kinked states for the
design 1 nanotube at an Ree value near to the
midpoint of the kinking transition. The figure
illustrates that kink formation and repair is a
relatively slow process partly because it needs
to be coupled to global changes in the nanotube
configuration and that Rqq is a good order pa-
rameter to encourage that transition because it
facilitates those global shape changes. For ex-
ample, starting at the unkinked minimum it is
unfavourable to introduce a kink at the centre
because the stresses in other regions of the ho-
mogeneously bent tube would initially still re-
main. As Rqq is reduced the bending becomes
more localized at the centre of the nanotube
and the two arms either side of the centre be-
come straighter. Below about Rqq = 117 nm,
the bending is sufficiently localized near the
centre that kink formation is favourable. As
Rqq decreases further the stress in the rest of
nanotube decreases as the two arms become
straighter until the minimum corresponding to
the unkinked state is reached.

Nanotube configurations Configurations
of the design 1 nanotube at a number of values
of Ree were shown in the main text (Fig. 1).
Here, in Figs. S6 and S7 we similarly illustrate

configurations of the design 2 and 3 nanotubes.
Their reduced tendency to kink (compared to
design 1) is apparent from the absence of kinks
in the 153 nm example for design 2 and the 153
and 92 nm examples for design 3. The kinks in
the design 2 nanotubes involve the unbinding
of short 2-bp domains and perhaps also the end
domain of a staple. By contrast, for the design
3 nanotubes the kinks involve the folding of the
tube at the planes where each helix has a nick
or a four-way junction, leading to the complete
loss of the coaxial stacking at these sites.

Final configurations for each umbrella sam-
pling window for the three designs are avail-
able to download from the Oxford University
Research Archive.12 We recommend such con-
figurations are viewed using oxView.13

Interacting nucleotides Three types of in-
teractions are counted, namely hydrogen bond-
ing, stacking, and coaxial stacking (Fig. S1).
A pair of nucleotides is considered as inter-
acting through a particular interaction when
the relevant interaction energy is lower than
−2.49 kJ/mol. To produce the plots in Fig. S8,
the total number of interacting pairs for each in-
teraction type is counted for each configuration
in the production trajectory in each umbrella
sampling window, and averaged over each tra-
jectory.

There are some common features in the plots
of the Ree-dependence of the number of inter-
acting pairs for the three nanotube designs in
Fig. S8. In the WLC regime of bending, the
number of stacked pairs and base pairs remains
fairly constant, while these numbers begin to
decrease as a kink forms. Meanwhile, the num-
ber of coaxially stacked pairs decreases gradu-
ally even in the WLC regime; nicks and junc-
tions are somewhat less stiff than intact double-
stranded DNA and the enhanced bending at
these sites leads to some loss of coaxial stacking.
The numbers of stacked pairs and of base pairs
show the clearest signals of kinking, with the
most abrupt changes being observed for design
1. These can be correlated with the changes in
Rqq seen in the plots in Fig. S9. Comparing the
three nanotube designs, design 1 starts to kink
at the largest Ree and design 3 at the smallest

7



Figure S5: A cut through the two-dimensional free-energy landscape for the design 1 nanotube
(Fig. 2 in the main text) at Ree = 170 nn, which is near to the midpoint of the kink transition.
Also depicted are representative configurations corresponding to the two minima and the top of the
barrier in this profile.

Ree.
For the stretched nanotubes, the number

of stacked pairs and hydrogen bonds remains
roughly constant, whereas the number of coax-
ially stacked pairs decreases sharply. This sug-
gests that the junctions show greater compli-
ance under tension than base pairs in the mid-
dle of a double helix. This effect may be coupled
to the local structural changes at the junctions
associated with the stretch-induced decrease in
the nanotube radii.

For nanotubes released from a bent configu-
ration, after they have fully relaxed, the num-

ber of interacting pairs is essentially the same
as that of a normal unstressed nanotube (Ta-
ble S1). This suggests that strong bending and
kink formation do not induce irreversible struc-
tural changes in the nanotubes.

Force-dependent landscapes In the main
text we showed how the free-energy landscape
of nanotube 1 changes as a compressive force
is applied along the end-to-end vector (Fig. 3).
Here, we show the equivalent plots for the de-
sign 2 and 3 nanotubes (Fig. S10). The be-
haviour in the homogeneously-bent regime is

8



Figure S6: (a) Representative configurations of the design 2 nanotube at different values of Ree.
(b) Close-ups of the kink for the Ree = 92 nm configuration. The view are from outside the kink
(left), inside the kink (middle) and side-on (right).

Table S1: The average number of interaction pairs of different types for the three DNA nanotube
designs. These are given for the relaxed nanotube at equilibrium and a nanotube that has been
allowed to relax back towards equilibrium from an initially highly bent configuration in an unbiased
simulation (i.e. the end configurations for the simulations represented in Fig. 6). In addition, the
theoretical maximum values allowed by the design have been provided.

Design State Stacked pairs Base pairs Coaxially stacked pairs
at equilibrium 12233 6409 540

1 bent and released 12232 6408 540
theoretical maximum 12234 6426 606

at equilibrium 14383 7540 672
2 bent and released 14384 7538 673

theoretical maximum 14386 7560 722
at equilibrium 14036 7536 1020

3 bent and released 14036 7536 1019
theoretical maximum 14038 7560 1070

very similar to the design 1 nanotube. Namely,
the free-energy landscape becomes very flat at
the Euler critical buckling force, thus lead-

ing to a rapid change in Ree expected for
the homogeneously-bent state as the force goes
above FE. The precise values of the critical

9



Figure S7: (a) Representative configurations of the design 3 nanotube at different values of Ree.
(b) Close-ups of the kink for the Ree = 54 nm configuration. The view are from outside the kink
(left), inside the kink (middle) and side-on (right).
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buckling forces are different for all three sys-
tems due to their differences in persistence and
contour lengths, as predicted by the formula
given in the main text.

The main qualitative differences in behaviour
between the three systems are due to their dif-
ferent propensities to kink. For the design 1
nanotube, the kinked state becomes lower in
free energy than the unkinked state well before
the critical buckling force is reached (Fig. 3).
For the design 2 nanotube there is still a force
range for which the kinked and unkinked states
are both free-energy minima, but the force at
which they are degenerate is now very close to
FE (at Fkink the barrier between the two states
is 8.0 kBT ). Finally, for design 3 the kinked
state only becomes stable above FE and at no
point does the landscape have two free-energy
minima separated by significant barrier. These
changes are in part simply due to the larger
contour length of these two nanotubes, which
leads to a lowering of FE, but the slope of the
(zero-force) free-energy landscape in the kinked
regime, i.e. the free-energy cost of further bend-
ing a kink, is also important as this determines
the force at which the kinked state becomes a
minimum.

DNA nanotube stretching In the main
text we showed the force-extension curve for
the design 1 nanotube as well as the change
in radius of the nanotube on stretching (Fig.
6). Here, we provide similar plots for the de-
sign 2 and 3 nanotubes (Fig. S11). The be-
haviour is again very similar. The extensible
worm-like chain model provides an excellent fit
to the force-extension curves, and both nan-
otubes again show clear decreases in their radii
in response to their stretching.

WLC fits The parameters for the WLC fits
to p(Ree) using the form given in Ref. 14 are
given in Table S2 for the three nanotube de-
signs. The parameters for the extensible WLC
fits to the force-extension curves using the form
given in Ref. 15 are given in Table S3 for the
three nanotube designs. The values obtained
for the contour lengths from the two methods
are consistent albeit with a much greater degree

of precision available from the force-extension
curves. Similarly, the values obtained for the
persistence length are consistent. In this case,
because the persistence lengths are much larger
than the contour length, the force-extension
curves provide much lower precision estimates
of the persistence length.

For six DNA double helices stretched in paral-
lel the extensional modulus would be expected
to be six times the stretch modulus of the indi-
vidual helices,10 i.e. 6 × 2700 pN ≈ 16 000 pN.
However, due mainly to the change in the ge-
ometry of the crossovers linking the helices on
stretching the extensional moduli of the nan-
otubes are instead about 10 000 pN. The loss of
about 1% of the coaxial stacking interactions
on stretching (Fig. S8) may also play a small
role in this reduction.

Gaussian curvature of sheets In Fig. S13
we show the Gaussian curvature, which is the
product of the principal curvatures, for the
origami sheets. For the double-layer sheet, as
expected from its saddle-like shape, it has a
negative Gaussian curvature across the whole
sheet; the Gaussian curvature is fairly constant
in the centre of the sheet, but increases in mag-
nitude towards the corners. For the two free-
energy minima of the single-layer sheet, like
for the mean curvature shown in Fig. 7(d) in
the main text, there is an approximate symme-
try with respect to the “unperturbed” diagonal.
For both forms, there are zones of strong pos-
itive Gaussian curvature (the principle curva-
tures have the same sign) that correspond to the
areas with greatest mean curvature. Along the
unperturbed diagonal, the curvature is close to
zero in the centre leading to a near-zero Gaus-
sian curvature, but at the corners of this diag-
onal the curvature along the diagonal becomes
opposite to the prevailing curvature, leading to
strongly negative Gaussian curvature. The lat-
ter is evident in the configurations visualized in
Fig. 7(c).

Sheet twist The overall twist of the one-layer
sheet is measured to be 84.2◦ and 85.1◦ for the
free-energy minima A and B, respectively. The
twist of the double-layer sheet is 43.6◦. The

12



0 50 100 150 200 250 300 350 400
Ree (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fo
rc

e
 (

p
N

)

Design 2
WLC Fit
Fkink = 1.425 pN
FE= 1.44 pN

0 50 100 150 200 250 300 350 400
Ree (nm)

0

50

100

150

200

250

300

Fr
e
e
 e

n
e
rg

y 
(k

B
T
)

0 pN
1.0 pN
1.83 pN
2.5 pN

0 50 100 150 200 250 300 350 400
Ree (nm)

0

50

100

150

200

250
Fr

e
e
 e

n
e
rg

y 
(k

B
T
)

0 pN
1.0 pN
1.425 pN
1.44 pN
2.0 pN

0 50 100 150 200 250 300 350 400
Ree (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fo
rc

e
 (

p
N

)

Design 3
WLC Fit
FE= 1.83 pN

(a)

(b)

Figure S10: (a) The free-energy landscape for the design 2 and design 3 nanotubes at a series of
compressive forces along the end-to-end vector. (b) F (Ree) = −dA(Ree)/dRee for the computed
landscapes and their WLC fits. The horizontal lines correspond to the force at which the two
free-energy minima associated with the kinked and unkinked states are degenerate (design 2 only)
and the predicted Euler buckling critical force.

Table S2: Parameters for the WLC fit to probability distribution for the end-to-end distance for
the three DNA nanotube designs. Lc is the contour length.

Lc (nm) Lp (µm)
Design 1 325± 5 6.49± 0.14
Design 2 388± 6 5.30± 0.13
Design 3 389± 9 6.77± 0.24

Table S3: Parameters for the extensible WLC fit to the force-extension curves of the three DNA
nanotube designs.

K (pN) Lc (nm) Lp (µm)
Design 1 10077± 150 325.20± 0.08 5.63± 0.48
Design 2 9147± 89 387.73± 0.07 5.00± 0.46
Design 3 10454± 62 388.93± 0.06 6.07± 0.74
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Figure S11: Force-extension curves for the DNA nanotube designs 2 and 3 along with extensible
WLC fits (the fit parameters are given in Table S3). The insets show the average nanotube radius
as a function of Ree.

lower value of twist in the double-layer case is
mainly due to its increased stiffness compared
to the single-layer case.
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Figure S12: Images of right-twisted A4 sheets of paper. In (a) the curvature is continuous, whereas
in (b) the curvature is localized at a fold. In (i) the bending is around the top-left to bottom-right
diagonal and the curvature is positive, whereas in (ii) the bending is around the bottom-left to
top-right diagonal and the curvature is negative. (b)(i) corresponds to a valley fold and (b)(ii) to
a mountain fold.
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Figure S13: The Gaussian curvature of configurations at the two free-energy minima of the single-
layer sheet and the free-energy minimum of the double-layer sheet as a function of the base-pair
position within the sheet.

15



the Weighted Histogram Analysis Method.
J. Comput. Chem. 1995, 16, 1339–1350.

10. Chhabra, H.; Mishra, G.; Cao, Y.;
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