Appendix A. Supplementary data

Engineering Oxygen Vacancies in CoO@Co₃O₄/C Nanocomposites for

Enhanced Electrochemical Performances

Hongqi Chu ^a, Dan Zhang ^a, Panpan Feng ^a, Yulong Gu ^a, Pen Chen ^b, Kai Pan ^b, Haijiao Xie ^c, Min Yang ^a*

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.

^b Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.

^c Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China.

*Corresponding author Email: yangmin@hit.edu.cn

Fig. S1 (a) Powder XRD patterns of as-prepared ZIF-67; (b) Nitrogen adsorption and desorption isotherms for ZIF-67 at 77 K; Pore size distribution plots of ZIF-67: (c) Horvath-Kawazoe (HK) and (d) Barrett-Joyner-Halenda (BJH).

Fig. S2 Thermogravimetric curves of the ZIF-67 precursor.

Fig. S3 SEM images of precursors treatment in different glucose concentration: (a) 2 mg mL⁻

¹; (b) 4 mg mL⁻¹; (c) 6 mg mL⁻¹; (d) 8 mg mL⁻¹; (e) 10 mg mL⁻¹ and (f) 15 mg mL⁻¹.

Fig. S4 SEM images of precursors treatment with different vacuum degrees in the heat treatment of Step II: (a) 2.4 mTorr; (b) 0.5 Torr; (c) 10 Torr; (d) 35 Torr; (e) 50 Torr and (f) 100 Torr.

Fig. S5 HRTEM images of (a) $CoO@Co_3O_4/C$ and (b) the precursor after heat treatment in Step II for 0.5 h.

Fig. S6 Raman spectra of (a) precursors treatment in different concentrations of glucose and(b) CoO@Co₃O₄/C, CoO_x and Co₃O₄.

Fig. S7 (a) Co^{3+}/Co^{2+} values of $CoO@Co_3O_4/C$ and Co_3O_4 . (b) O_V/O_L values of $CoO@Co_3O_4/C$ and Co_3O_4 obtained from XPS results, this ratio represents the content of oxygen vacancy.

Fig. S8 Electrochemical performance of Co₃O₄ and CoO@Co₃O₄/C: (a) CV curves with scan rate of 100 mV s⁻¹; (b) CV curves of CoO@Co₃O₄/C with different scan rate between 10 and 100 mV mVs⁻¹ (insert is diagram of the square root of anodic peak current and scanning rate); (c) Galvanostatic charge/discharge curves of CoO@Co₃O₄/C with different current densities from 1 to 5 A g⁻¹; (d) EIS Nyquist plots of Co₃O₄ and CoO@Co₃O₄/C.

Fig. S9 Equivalent circuit diagram of Co₃O₄ and CoO@Co₃O₄/C.

Fig. S10 Electrochemical measurements of the double-layer capacitance (C_{dl}) of (a) CoO_x, (b) CoO@Co₃O₄/C, and (c) Co₃O₄; (d) plots of the capacitive currents as a function of scan rate for CoO_x, CoO@Co₃O₄/C and Co₃O₄.

Fig. S11 SEM (a) and elemental mapping images (b) of CoO@Co₃O₄/C after a 30 h stability test in 1 mol L⁻¹ KOH.

Fig. S12 (a) XRD patterns of CoO@Co₃O₄/C before and after long-time stability test. X-ray photoelectron spectra of CoO@Co₃O₄/C after long-time stability test: (b) Co2p; (c) C1s; (d) O1s; O_v represents the oxygen vacancy; O_L is the lattice oxygen of Co-O; O_{OH} represents the oxygen in hydroxyl arise from physically oxygen species.

Fig. S13. The optimized structure (side view) of $CoO@Co_3O_4/C$ (a) and $CoO@Co_3O_4/C$ -O-vacancy (b).

Fig. S14. Vesta display model of CoO@Co₃O₄/C and CoO@Co₃O₄/C-O-vacancy. The optimized structure of (a) CoO@Co₃O₄/C (top view); (b) CoO@Co₃O₄/C-O-

vacancy (top view); (c) $CoO@Co_3O_4/C$ (side view), and (d) $CoO@Co_3O_4/C$ -O-vacancy (side view).

Fig. S15. Charge density difference of CoO@Co₃O₄/C with *OH intermediate, where the isosurface value is set to be 0.01 e/Å and the yellow and cyan refer to the positive and negative charges, respectively.

Table S1. The specific surface area and pore diameter of different samples.

Samples	ZIF-67	CoOx	C0O@C03O4/C	C0 ₃ O ₄
Specific surface area (m ² ·g ⁻¹)	1724.8	2311.1	188.5	110.7
Micropore diameter (nm)	1.05	0.72	1.68	1.67
Mesoporous diameter (nm)	/	2.8	3.97	3.14

Catalyst	Loading density (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Substrate	Reference
C0O@C03O4/C	0.269	287	75	Glassy carbon	This work
Co2MO3O8@ NC-800	0.14	331	87.5	Glassy carbon	Angew. Chem. Int. Ed. 2020, 59(29): 11948- 11957
Pd-e-NiCo-PBA- C	0.28	309	67	Glassy carbon	<i>Adv. Funct. Mater</i> , 2021 , 31(10): 2008989
MXene/Co ₃ O ₄	0.407	300	118	Glassy carbon	<i>Sci. Bull.</i> , 2020 , 65(6): 460-466

Table S2. Comparison of OER activity for CoO@Co $_3O_4/C$ and recently reported Co-based catalysts.

CoN					
CoP-					
TiO					
х					
CoP-					
TiO					
Х					
CoP-	0.2	337	72.1	Glassy carbon	Small, 2020, 16(2): 1905075
TiO					
Х					
CoP-					
TiO					
х					
CoP/					

TiO					
x					
CoP/TiO _x					
Co ₂ P/CoNPC	0.39	328	78	Glassy carbon	<i>Adv. Mater.</i> 2020, 32(36): 2003649
Co ₃ O ₄ /CeO ₂	0.4	270	51.9	Glassy carbon	<i>Adv. Mater.</i> 2019 , 31, 1900062
CoSAs-MoS2/TiN NRs	50	340.6	95.1	Carbon cloth	Adv. Funct. Mater, 2021 : 2100233
Co-Mo ₂ C-CN _x -2	1.048	338	70	Glassy carbon	<i>Appl. Catal., B: Environ,</i> 2021 , 284: 119738
C0 ₃ O _{3.87} F _{0.13}	0.072	430	56	Glassy carbon	<i>Appl. Catal., B: Environ,</i> 2021 , 281: 119535
PdCo-300	0.455	350	50	Glassy carbon	<i>Appl. Catal., B: Environ,</i> 2019 , 243: 175-182
C03O4-x	1.5	309	88	Nickel foam	J. Catal, 2020 , 381: 395- 401
CoP/NCNHP	0.39	310	70	Glassy carbon	J. Am. Chem. Soc. 2018 , 140, 2610–2618
3D CoS _{0.46} P _{0.54}	0.354	302	67	Glassy	Small Methods 2020,

				carbon	4(7): 2000043
Co-MoO _x	0.28	340	49	Carbon cloth	J. Mater. Chem. A, 2019 , 7, 1005