Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Electrochemically Reduced Ultra-high Mass Loading Three-Dimensional Carbon
Nanofibers Network: A Reproducible and Stable Cell Voltage of 2.0 V and High Energy

Density Symmetric Supercapacitor

Gunendra Prasad Ojha *°, Bishweshwar Pant “*, Jiwan Acharya “*, and Mira Park **

aCarbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro,

Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.

bWoosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro,
Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea

*Corresponding Author: wonderfulmira@woosuk.ac.kr (M. Park)

S1


mailto:wonderfulmira@woosuk.ac.kr

Figure S1. Digital images of 3D mat during NaBH , treatment.
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Figure S2. Digital image of 3D mat after freeze-dry.
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Figure S3. Digital photographs showing their representative mass loading (35, 20, and 10
mgem ) of the fabricated electrodes
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Figure §4. Cross-section image showing thickness of the Na*-LBL 3D-CNF-35 electrode
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Figure S5. Cross-section showing thickness of the Na*-LBL 3D-CNF-10 electrode
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Figure 86. Cross-section showing thickness of the Na*-LBL 3D-CNF-20 electrode.
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Figure S7. Surface morphology of pristine 2D-CNFs.
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Figure §8. Color mapping of Na*-LBL 3D-CNF-35 electrode.
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Figure 89. TEM (A) and SAED images of LBL 3D-CNF-35 before electroreduction technique .
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Figure S10. Survey spectrum of LBL 3D-CNF-35 electrode before and after electroreduction
technique.
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Figure S11. Linear sweep voltammetry test of Na™-LBL 3D-CNF-35 electrode at 10 mV/s
scan rate, which indicates the standard potential for hydrogen (H>) evolution.
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Figure S12. CV (A) and GCD (B) curves of Na*-LBL 3D-CN-10 electrode at different scan
rates and current denisties.
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Figure S13. CV (4) and GCD (B) curves of Na*-LBL 3D-CN-20 electrode at different scan
rates and current denisties.

Table S1. A comparative study showing electrochemical performances of Na+-LBL 3D-CNF-
35 electrode with reported literatures

S.N. Materials Loading Specific Working Reference
mass (mg) | capacitance | potential (V) s
(Fgh)
1 Activated wood 30 118 Fg! -0.9-0.0 !
carbon
2 Carbon//metal oxide 13.4 2098 mFem- 0-0.6 2
composite 2
3 Activated carbon 10+1 161 Fg! 0-1 3
fibers
4 CNT/MnO2/graphene 9.1 3.38 Fem™? 0-1 4
5 N-doped layered 17.7 161 Fg! -1-0 3

porous carbon

6 A PPyNP/f~-CNT 14 176.3 -0.2-0.6 6
mFcm-3

7 3D lower structured 11.16 103.6 Fg'! 0-1 7
graphene

8 Highly dense 11.5 186 Fg-! 0-1 8

mesoporous carbon
9 Electrolyte-mediated 10 1570 mFem- 0-1 ?
chemically converted 2

graphene

10 Na*-LBL 3D-CNF 35 170 Fg! -1.25-0 This work

(5.93 Fcm)
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Figure S14. Relation between aerial (A) and gravimetric (B) capacitances and current
density.
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Figure S15. IR drop of Na*-LBL 3D-CNFs s electrodes at different mass loading 10, 20, and
35 mgem™? at a current density of 1 mAcm™.
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Figure S16. Relation between specific capacitance and current density of symmetric device
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Table S2: A comparative study showing Energy and Power density of the carbon-based

symmetric supercapacitors.

Weight
Energy Power | Otf .
No. Electrode Current density d(eir;s;tzy d(igszltzy ) e(; N Ref
materials (mA/cm?2 or A/g) UWhem? | pWem? matserial :
/Whkg) /W/kg) (mg/cm?
)

1 ZTC-300 1.25 A/g 7.5 625 - 10
2 800 AC 03 Alg 3 220 1
3 PCN-900 0.1 Alg 8.02 250 12
4 NOCS-1/10 0.5A/g 4.3 250 13
5 a-CSN/EG-10 03 A/g 7.3 500 14
6 ACG-200 1 Alg 7.5 200 15
7 | 200-HTC-800-3 0.4 Alg 8.11 400 16
8 | N-OMCN@GN 1 Alg 6.68 250 17
9 MOLC 0.5A/g 3.85 27.7 8 18
10 HGOCN-A 0.5A/g 4.8 5000 19
11 CPC 1 Alg 6.45 20 20
12 L-CAs 1 Alg 26.25 1000 21
13 BHNC 1 Alg 6.1 26000 2
14 RCFs 0.2 Alg 6.1 1600 23
15 N/O-CNS 0.5A/g 6.5 80 H
16 | N/S/O-3D PC 0.3 8.4 - 25
17 PCNFs 1 Alg 244 8800 26
18 NPSO 0.5A/g 23.17 500 27
19 NHPCs-800 0.5A/g 23.8 402

20 | N/S-PCNSI1-1 0.2 Alg 21 180 28
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21 PCAs 0.5A/g 19.74 500 29
22 PDD-DCNT 1 Alg 19.1 800 30
Na*-LBL 3D- 1922 3979
53 | CNF-35//Na*- | mAcm? MWhem? | 1922 35 | This
LBL 3D-CNF- Q7 pWem2 | mgem? | work
35 Whkg!) | (57 Wkg™"
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