
S1

 Supplementary Information

Electrochemically Reduced Ultra-high Mass Loading Three-Dimensional Carbon 

Nanofibers Network: A Reproducible and Stable Cell Voltage of 2.0 V and High Energy 

Density Symmetric Supercapacitor 

Gunendra Prasad Ojha a, b, Bishweshwar Pant a,b, Jiwan Acharya a, b , and Mira Park a b*,

aCarbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, 

Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea. 

bWoosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, 

Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea 

*Corresponding Author: wonderfulmira@woosuk.ac.kr (M. Park)

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2021

mailto:wonderfulmira@woosuk.ac.kr


S2

Figure S1. Digital images of 3D mat during NaBH4 treatment.
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Figure S2. Digital image of 3D mat after freeze-dry.
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Figure S3. Digital photographs showing their representative mass loading (35, 20, and 10 
mgcm-2.) of the fabricated electrodes 
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Figure S4. Cross-section image showing thickness of the Na+-LBL 3D-CNF-35 electrode
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Figure S5. Cross-section showing thickness of the Na+-LBL 3D-CNF-10 electrode
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Figure S6. Cross-section showing thickness of the Na+-LBL 3D-CNF-20 electrode.
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Figure S7. Surface morphology of pristine 2D-CNFs.
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Figure S8. Color mapping of Na+-LBL 3D-CNF-35 electrode.
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Figure S9. TEM (A) and SAED images of LBL 3D-CNF-35 before electroreduction technique .
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Figure S10. Survey spectrum of LBL 3D-CNF-35 electrode before and after electroreduction 
technique.
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Figure S11. Linear sweep voltammetry test of Na+-LBL 3D-CNF-35 electrode at 10 mV/s 
scan rate, which indicates the standard potential for hydrogen (H2) evolution.
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Figure S12. CV (A) and GCD (B) curves of Na+-LBL 3D-CN-10 electrode at different scan 
rates and current denisties.
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Figure S13. CV (A) and GCD (B) curves of Na+-LBL 3D-CN-20 electrode at different scan 
rates and current denisties.

Table S1. A comparative study showing electrochemical performances of Na+-LBL 3D-CNF-
35 electrode with reported literatures

S.N. Materials Loading 
mass (mg)

Specific 
capacitance 

(Fg-1)

Working 
potential (V)

Reference
s

1 Activated wood 
carbon

30 118 Fg-1 -0.9 – 0.0 1

2 Carbon//metal oxide 
composite

13.4 2098 mFcm-

2
0 – 0.6 2

3 Activated carbon 
fibers

10 ± 1 161 Fg-1 0 - 1 3

4 CNT/MnO2/graphene 9.1 3.38 Fcm-2 0 - 1 4

5 N-doped layered 
porous carbon

17.7 161 Fg-1 -1 – 0 5

6 A PPyNP/f-CNT 14 176.3 
mFcm-3

-0.2 – 0.6 6

7 3D lower structured 
graphene

11.16 103.6 Fg-1 0 – 1 7

8 Highly dense 
mesoporous carbon

11.5 186 Fg-1 0 – 1 8

9 Electrolyte-mediated 
chemically converted 

graphene

10 1570 mFcm-

2
0 – 1 9

10 Na+-LBL 3D-CNF 35 170 Fg-1 
(5.93 Fcm-2)

-1.25 - 0 This work
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Figure S14. Relation between aerial (A) and gravimetric (B) capacitances and current 
density.
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Figure S15. IR drop of Na+-LBL 3D-CNFs electrodes at different mass loading 10, 20, and 
35 mgcm-2 at a current density of 1 mAcm-2.
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Figure S16. Relation between specific capacitance and current density of symmetric device
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Table S2: A comparative study showing Energy and Power density of the carbon-based 
symmetric supercapacitors.

No. Electrode 

materials
Current density 

(mA/cm2 or A/g)

Energy 
density 
(1922 

µWhcm-2 
/Whkg-1)

Power 
density 
(1922 
µWcm-2 
/W/kg)

Weight 
of 

electrod
e 

material
s 

(mg/cm2

)

Ref.

1 ZTC-300 1.25 A/g 7.5 625 - 10

2 800 AC 0.3 A/g 3 220 11

3 PCN-900 0.1 A/g 8.02 250 12

4 NOCS-1/10 0.5 A/g 4.3 250 13

5 a-CSN/EG-10 0.3 A/g 7.3 500 14

6 ACG-200 1 A/g 7.5 200 15

7 200-HTC-800-3 0.4 A/g 8.11 400 16

8 N-OMCN@GN 1 A/g 6.68 250 17

9 MOLC 0.5 A/g 3.85 27.7 8 18

10 HGOCN-A 0.5 A/g 4.8 5000 19

11 CPC 1 A/g 6.45 20 20

12 L-CAs 1 A/g 26.25 1000 21

13 BHNC 1 A/g 6.1 26000 22

14 RCFs 0.2 A/g 6.1 1600 23

15 N/O-CNS 0.5 A/g 6.5 80 24

16 N/S/O-3D PC 0.3 8.4 - 25

17 PCNFs 1 A/g 24.4 8800 26

18 NPSO 0.5 A/g 23.17 500 27

19 NHPCs-800 0.5 A/g 23.8 402

20 N/S-PCNS1-1 0.2 A/g 21 180 28
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21 PCAs 0.5 A/g 19.74 500 29

22 PDD-DCNT 1 A/g 19.1 800 30

23

Na+-LBL 3D-
CNF-35//Na+-
LBL 3D-CNF-

35

1 mAcm-2

1922 
µWhcm-2 

(27 
Whkg-1)

3979  
1922 

µWcm-2 

(57 Wkg-1)

35 
mgcm-2

This 
work
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