Electronic Supplementary Information

In situ self-assembled N-rich carbon on pristine graphene as a highly effective support and cocatalyst of Pt nanoparticles for superior catalytic activity toward methanol oxidation

Xiuling Fan,^{ab} Ming Zhao,^c Tianhao Li,^c Lian Ying Zhang,^d Maoxiang Jing,^e Weiyong Yuan*^{ab} and Chang Ming Li^c

^a Ningbo Research Institute, Zhejiang University, Ningbo 315100, China

^b College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^c Institute for Clean energy and Advanced Materials, College of Materials & Energy, Southwest University, Chongqing 400715, China

^d Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China

^e Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

*Corresponding author. E-mail address: wyyuan@zju.edu.cn

Contents

Size distribution of Pt NPs in G@NC@Pt (Fig. S1).

Size distribution of Pt NPs in G@NC@Pt (2:5) (Fig. S2).

Detailed comparison of G@NC@Pt with state-of-the-art commercial Pt/C catalysts and representative noncovalently functionalized carbon supported Pt (Table S1).

CV curves of G@NC@Pt (2:3) and commercial Pt/C after measuring CV for 1000 cycles, and initial CV curve of G@NC@Pt (2:3) and those after 500 and 1000 cycles of the ADT tests in 1 M CH₃OH + 0.5 M H₂SO₄ (Fig. S3).

CV curves of G@NC@Pt with different Pt loadings (Fig. S4).

Chronoamperometric curves of G@NC@Pt with 20% and 40% loadings and the remaining percentage of peak current for G@NC@Pt with 20% and 40% loadings after measuring CV for different numbers of cycles (Fig. S5).

Fig. S1 Size distribution of Pt NPs in G@NC@Pt.

Fig. S2 Size distribution of Pt NPs in G@NC@Pt (2:5).

Catalyst	Forward peak current density (A mg ⁻¹ Pt)	Onset potential (V)	Scan rate (mV s ⁻¹)	Electrolyte	Ref.
Commercial Pt/C (20%, JM)	0.354	~0.58 (vs. RHE)	50	0.5 M H ₂ SO ₄	1
commercial Pt/C (20%, Alfa Aesar)	0.212	~0.2 (vs. SCE)	50	0.5 M H ₂ SO ₄	2
Commercial Pt/C (20%, JM)	0.1845	~0.38 (vs. SCE)	50	1.0 M H ₂ SO ₄	3
Commercial Pt/C (20%, JM)	0.295	0.26 (vs. Ag/AgCl)	50	0.5 M H ₂ SO ₄	4
Commercial Pt/C (20%, JM)	~0.202	~0.25 (vs. SCE)	20	0.5 M H ₂ SO ₄	5
Commercial Pt/C (20%, E-TEK)	~0.105	~0.4 (vs. Ag/AgCl)	50	0.5 M H ₂ SO ₄	6
Pt-TiO ₂ -rNHGO	0.591	~0.30 (vs. Ag/AgCl)	50	0.5 M H ₂ SO ₄	7
Pt@RFC	0.657	0.36 (vs. SCE)	50	0.5 M H ₂ SO ₄	8
Pt/NCNTs-500	0.80	0.23 (vs. SCE)	20	0.5 M H ₂ SO ₄	9
PMo/Pt/MWCNT	0.1647	0.2 (vs. Ag/AgCl)	50	1.0 M H ₂ SO ₄	10
Pt/TiO ₂ @NC-NCNTs	0.577	~0.27 (vs. SCE)	50	0.5 M H ₂ SO ₄	11
Pt/G-NCNTs	0.74	~0.45 (vs. RHE)	50	0.5 M H ₂ SO ₄	12
Pt-PVP-GNF	~0.235	0.55 (vs. NHE)	20	0.5 M H ₂ SO ₄	13
Pt/e-RGO-SWCNT	0.192	~0.45 (vs. SCE)	50	0.5 M H ₂ SO ₄	14
Pt/PANI-HPMo-GS	0.322	0.2 (vs. SCE)	20	0.5 M H ₂ SO ₄	15
Pt-RGO/PF	0.404	~0.23 (vs. SCE)	50	0.5 M H ₂ SO ₄	16
Pt-CQD/RGO	0.529	~0.25 (vs. SCE)	50	0.5 M H ₂ SO ₄	17
Pt/(LDCNT) ₃ -(NG) ₇	0.872	~0.20 (vs. SCE)	50	0.5 M H ₂ SO ₄	18
Pt/G ₅ -(PCNT) ₅	0.618	~0.25 (vs. SCE)	20	$1 \text{ M H}_2\text{SO}_4$	19
Pt/CNTs@TiCoN	0.92	~0.32 (vs. Ag/AgCl)	50	0.5 M H ₂ SO ₄	20
Pt/Ti _{0.5} Cr _{0.5} N ₂ /G	0.785	0.46 (vs. RHE)	50	0.5 M H ₂ SO ₄	21
G-Cys-Au@Pt	0.674	0.23 (vs. SCE)	50	0.1 M H ₂ SO ₄	22
G@NC@Pt	0.961	0.20 (vs. SCE)	50	0.5 M H ₂ SO ₄	This work

Table S1 Detailed comparison of G@NC@Pt with state-of-the-art commercial Pt/C

catalysts and representative noncovalently functionalized carbon supported Pt catalysts.

Fig. S3 (A) CV curves of G@NC@Pt (2:3) and commercial Pt/C after measuring CV for 1000 cycles in 1 M CH₃OH + 0.5 M H₂SO₄. (B) Initial CV curve of G@NC@Pt (2:3) and those after 500 and 1000 cycles of the ADT tests carried out in 1 M CH₃OH + 0.5 M H₂SO₄.

Fig. S4 CV curves of G@NC@Pt with different Pt loadings.

Fig. S5 (A) Chronoamperometric curves of G@NC@Pt with 20% and 40% loadings. (B) The remaining percentage of peak current for G@NC@Pt with 20% and 40% loadings after measuring CV for different numbers of cycles. The inset of (A) shows the normalized current density versus time curves obtained from the chronoamperometric curves.

References

- 1. J. Cao, M. Guo, J. Wu, J. Xu, W. Wang and Z. Chen, J. Power Sources, 2015, 277, 155-160.
- 2. R.-X. Wang, J.-J. Fan, Y.-J. Fan, J.-P. Zhong, L. Wang, S.-G. Sun and X.-C. Shen, *Nanoscale*, 2014, **6**, 14999-15007.
- H. Yan, C. Tian, L. Sun, B. Wang, L. Wang, J. Yin, A. Wu and H. Fu, *Energy Environ. Sci.*, 2014, 7, 1939-1949.
- 4. Y. Li, L. Zhang, Z. Hu and J. C. Yu, *Nanoscale*, 2015, 7, 10896-10902.
- 5. G. Zhang, C. Huang, R. Qin, Z. Shao, D. An, W. Zhang and Y. Wang, *J. Mater. Chem. A*, 2015, **3**, 5204-5211.
- 6. S. Guo, S. Dong and E. Wang, *Chem. Commun.*, 2010, **46**, 1869-1871.
- 7. R. Cui, S. Liu, X. Guo, H. Huang, J. Wang, B. Liu, Y. Li, D. Zhao, J. Dong and B. Sun, *ACS Appl. Energy Mater.*, 2020, **3**, 2665-2673.
- 8. K. Li, Z. Jin, J. Ge, C. Liu and W. Xing, J. Mater. Chem. A, 2017, 5, 19857-19865.
- 9. W. Shi, K.-H. Wu, J. Xu, Q. Zhang, B. Zhang and D. S. Su, Chem. Mater., 2017, 29, 8670-8678.
- 10. X. Jin, B. He, J. Miao, J. yuan, Q. Zhang and L. Niu, *Carbon*, 2012, **50**, 3083-3091.
- 11. M. Jin, S.-Y. Lu, X. Zhong, H. Liu, H. Liu, M. Gan and L. Ma, *ACS Sustainable Chem. Eng.*, 2020, **8**, 1933-1942.
- 12. L.-M. Zhang, X.-L. Sui, L. Zhao, G.-S. Huang, D.-M. Gu and Z.-B. Wang, *Carbon*, 2017, **121**, 518-526.
- 13. Y. L. Hsin, K. C. Hwang and C.-T. Yeh, J. Am. Chem. Soc., 2007, 129, 9999-10010.
- 14. Q. Zhang, F. Yue, L. Xu, C. Yao, R. D. Priestley and S. Hou, *Appl. Catal.*, *B*, 2019, 257, 117886.
- 15. Z. Cui, C. X. Guo and C. M. Li, J. Mater. Chem. A, 2013, 1, 6687-6692.
- 16. Q. Xue, J.-K. Li and Z.-Y. Yang, *Langmuir*, 2017, **33**, 872-880.
- 17. T.-Z. Hong, Q. Xue, Z.-Y. Yang and Y.-P. Dong, J. Power Sources, 2016, 303, 109-117.
- M. Yan, Q. Jiang, T. Zhang, J. Wang, L. Yang, Z. Lu, H. He, Y. Fu, X. Wang and H. Huang, J. Mater. Chem. A, 2018, 6, 18165-18172.
- 19. X. Zhang, J. Zhang, H. Huang, Q. Jiang and Y. Wu, *Electrochim. Acta*, 2017, **258**, 919-926.
- 20. G. Zhan, Z. Fu, D. Sun, Z. Pan, C. Xiao, S. Wu, C. Chen, G. Hu and Z. Wei, *J. Power Sources*, 2016, **326**, 84-92.
- 21. B. Liu, L. Huo, R. Si, J. Liu and J. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 18770-18787.
- 22. N. Seselj, C. Engelbrekt, Y. Ding, H. A. Hjuler, J. Ulstrup and J. Zhang, *Adv. Energy Mater.*, 2018, **8**, 1702609.