Electronic support information (ESI) for Nanoscale

Nano-ZnS decorated hierarchically porous carbon electrocatalyst with multiple enzyme-like activities as nanozyme sensing platform for simultaneous detection of dopamine, uric acid, guanine, and adenine

Kai Zhang^a, Zhonghui Zhuo^a, Guorong Fan^a, Zongde Wang^a, Shangxing Chen^a, Lulu Xu^b, Yangping Wen^{b*}, Peng Wang^{a*}

^aCollege of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Nanchang 330045, P.R. China

^b Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China

*Corresponding author

E-mail: wenyangping1980@gmail.com (Y. Wen)

pengwang1981@126.com (P. Wang)

Content

1.	XRD of different materials
2.	TEM of different materials
3.	EISs and CVs of different materials
4.	CVs of DA, UA, G and AS6
5.	Peroxidase and oxidase activity of different materials
6.	Simultaneous detection of DA, UA, G and AS8
7.	Interference
8.	Repeatability and reproducibility
9.	Comparative analysis of synthetic methods of zinc sulfide-carbon composites in
	recent years
10.	Elemental composition of different materials from XPS analysisS12
11.	I_D/I_G values of Raman spectra of different materialsS13
12.	Textural properties of different materials
13.	Comparative analysis of DA, UA, G and A with different electrodes in recent
	years

1. XRD of different material

Figure S1 Wide-angle XRD patterns of unetched ZS (a), ZS (b), unetched ZSHPC (c), ZSHPC

(d), unetched PC (e) and PC (f).

2. TEM of different materials

Figure S2 TEM images of ZHPC (A and B), ZSPC (D and E), SHPC (E and F), and PC (G and

H).

3. EIS and CVs of different materials

Figure S3 Nyquist plots (A and C) and CVs (B and D) of HPC/GCE (a), SPC/GCE (b), PC/GCE

(c), ZS/GCE (d), bare GCE (e) and unetched PC/GCE (f).

4. CVs of DA, UA, G and A

Figure S4 CVs of 60 µM DA, UA, G and A at ZSHPC/GCE (a), ZHPC/GCE (b), ZSPC/GCE (c),

SHPC/GCE (d), PC/GCE (e) and bare GCE (f) in 0.1 M PBS (pH = 3.0).

5. Peroxidase and oxidase activity of different materials

Figure S5 UV-vis absorption spectra of TMB + different materials system in the presence of H_2O_2 (A) and different materials system in the presence of TMB (B). Insets are corresponding photographs of above.

6. Simultaneous detection of DA, UA, G and A

Figure S6. DPVs obtained for the simultaneous addition of DA, UA, G and A in the concentration range of 0.3 to 100 μ M each at ZSHPC/GCE in 0.1 M PBS (pH = 3.0), and the relationship between concentration and $I_{p,a}$ at low concentrations of DA (B), UA (C), G (D) and A (E).

7. Interference, repeatability and reproducibility

Figure S7 Influence of coexisting substances on the current response of DA, UA, G and A for ZSHPC/GCE in 0.1 M PBS (pH = 3.0) containing 60 μ M DA, UA, G and A and several

interferences.

8. Repeatability and reproducibility

Figure S8 The repeatability (A) and reproducibility (B) of ZSHPC/GCE for voltametric responses

of DA, UA, G and A.

9. Comparative analysis of synthetic methods of zinc sulfide-carbon composites

in recent years

 Table S1 Comparative analysis of synthetic methods of zinc sulfide-carbon composites in recent years.

zinc	sulfur	carbon						
source source source			process	Ref				
	source	500100	step 1 synthesis of negatively charged zinc sulfide					
	sodium	multiwalle step 2 synthesis of positively charged multiwalled						
Zinc		d carbon	arbon carbon nanotube					
acetate	sulfide	nanotube	ube step 3 synthesis of zinc sulfide-carbon composite					
			by heteroaggregation					
			step 1 synthesis of $SiO_2(a)$ carbon nanotube					
7.		multiwalle	step 2 synthesis of SiO ₂ /ZnSilicate@ carbon					
Zinc	sodium	d carbon	nanotube	3				
nitrate	sulfide	nanotube	notube step 3 synthesis of zinc sulfide@ carbon nanotube					
			by hydrothermal treatment					
	thiocarba e mide		step 1 synthesis of preoxidized PVA/PTFE					
zinc		PVA/PTFE	VA/PTFE nanofiber by spinning process					
acetate		nanofiber	step 2 synthesis of zinc sulfide-carbon composite	4				
			by solvothermal treatment					
_:	1'		step 1 synthesis zinc sulfide					
Zinc	ate sulfide	socium	sodium	graphene	step 2 synthesis of zinc sulfide-graphene	5		
suitate			composite by hydrothermal treatment					
zinc	chicken	chicken	one pot hydrothermal treatment of aqueous	6				
acetate	feather	feather	her solution of zinc acetate and chicken feather					
zinc	pig bristle		one pot reflux of zinc acetate and pig bristle in	7				
acetate		pig bristle	potassium hydroxide aqueous solution					
Tino	aulfumia	leave of	one pot hydrothermal treatment of zinc chloride	Thia				
ZINC	c sulfuric ide acid	camphor and leave of camphor tree in sulfuric acid aqueous						
chioride		tree	solution	work				

10. I_D / I_G values of Raman spectra of different materials.

Different carbon materials	I_D / I_G
ZSHPC	1.0527
ZHPC	1.0103
ZSPC	1.0632
SHPC	1.0476
PC	1.0466

Table S2 I_D / I_G values of Raman spectra of different materials.

11. Elemental composition of different materials from XPS analysis

Sample	% Carbon (C1s)	% Zinc (Zn2p)	% Sulfur (S2p)	% Oxygen (Os1)
ZSHPC	91.46	0.51	1.76	3.84
ZHPC	88.92	/	0.38	6.97
ZSPC	83.95	3.08	3.43	6.37
SHPC	94.28	/	0.78	4.93
PC	85.33	/	/	11.59

 Table S3 Elemental composition of different materials from XPS analysis.

12. Textural properties of different materials

Textural property	$S_{BET} \left(m^2/g\right)$	Pore volume (cm ³ /g)	Micropore- H-K (nm)	Mesoporous- DFT (nm)	Macropore- DFT (nm)
ZSHPC	1116.59	2.11	0.63	22.65	48.69
ZHPC	911.83	1.38	0.54	22.65	45.90
ZSPC	728.89	0.57	0.59	/	48.69
SHPC	541.44	0.48	0.66	22.65	48.69
PC	198.43	0.12	/	/	/
unetched PC	13.61	/	/	/	/

 Table S4 Textural properties of different materials.

13. Comparative analysis of DA, UA, G and A with different electrodes in recent years

Electrode	Linear range (µM)				Detection limit (µM)				Ref
	DA	UA	G	А	DA	UA	G	А	
p-GLY/GO/GCE	0.2-62	0.10-105	0.15-48	0.090-103	0.63	0.59	0.48	1.28	8
Au/HG	0.4-20	0.6-40	6-500	0.6-40	0.02	0.57	2.5	0.42	9
Ag@Cu2O@GO/GCE	0.001-0.5	0.05-6	0.002-1	0.02-6	0.1	6.0	0.2	3.0	10
PImox-GO/GCE	12-278	3.6-249.6	3.3-103.3	9.6-215	18	0.63	6.48	1.28	11
PAE/GCE	2.5-75	10-750	7.5-75		0.07	5 0.35	0.025		12
Nano-Au/DNA/nano-Au/	0.008-1.1	0.09-12	0.009-5.0	0.06-0.8	0.2	8.0	0.5	4.0	13
Poly (SFR)/GCE FeTe ₂ /GP	5-120	3-120	1-160	3-100	0.023	8 0.042	0.034	0.026	14
ZSHPC/GCE	0.3-500	0.7-500	0.3-500	0.5-500	0.11	6 0.262	0.07	0.075	This work

Table S5 Comparison and analysis of DA, UA, G and A with different electrodes in recent years.

References

- 1. L. K. Sarpong, M. Bredol, M. Schönhoff, Carbon, 2017, 125, 480-491.
- L. K. Sarpong, M. Bredol, M. Schönhoff, A. Wegrzynowicz, K. Jenewein, H. Uphoff, *Optical Materials*, 2018, 86, 398-407.
- 3. X. Y. Hou, T. Peng, J. B. Cheng, Q. H. Yu, R. J. Luo, Y. Lu, X. M. Liu, J. K. Kim, J. He, Y. S. Luo, *Nano Res.*, 2017, **10**, 2570-2583.
- 4. L. Y. Wang, J. G. Ju, N. P. Deng, G. Wang, B. W. Cheng, W. M. Kang, *Electrochem. Commun.*, 2018, **96**, 1-5.
- A. Hassan, R. Liaquat, N. Iqbal, G. Ali, X. Fan, Z. L. Hu, M. Anwar, A. Ahmad, J. Electroanal. Chem., 2021, 889, 115223.
- V. M. Rangaraj, A. A. Edathil, P. Kadirvelayutham, F. Banat, *Mater. Chem. Phys.*, 2020, 248, 122953.
- C. M. Cova, A. Zuliani, M. J. Muñoz-Batista, R. Luque, ACS Sustainable Chem. Eng., 2019, 7, 1300-1307.
- S. Y. He, P. He, X. Q. Zhang, X. J. Zhang, K. L. Liu, L. P. Jia, F. Q. Dong, *Anal. Chim. Acta*, 2018, 1031, 75-82.
- S. H. Gao, H. J. Li, M. J. Li, C. P. Li, L. R. Qian, B. H. Yang, J. Solid State Electrochem., 2018, 22, 3245-3254.
- T. Gan, Z. K. Wang, Z. X. Shi, D. Y. Zheng, J. Y. Sun, Y. M. Liu, *Biosens. Bioelectron.*, 2018, 112, 23-30.
- 11. X. F. Liu, L. Zhang, S. P. Wei, S. H. Chen, X. Ou, Q. Y. Lu, *Biosens. Bioelectron.*, 2014, **57**, 232-238.
- 12. H. Y. Li, X. L. Wang and Z. X. Wang, Anal. Sci., 2015, 31, 1225-1231.
- 13. L. M. Niu, K. Q. Lian, H. M. Shi, Y. B. Wu, W. J. Kang, S. Y. Bi, *Sens. Actuators, B*, 2013, **178**, 10-18.
- 14. S. Pradhan, S. Pramanik, D. K. Das, R. Bhar, R. Bandyopadhyay, P. Millner, P. Pramanik, *New J. Chem.*, 2019, **43**, 10590-10600.