Electronic Supplementary Information (ESI)

pH-Dependent interaction mechanism of lignin nanofilms

Seo Yoon Lee,^a Jinhoon Lee,^a Yoojung Song,^{ab} Markus Valtiner,^c Dong Woog Lee^a*

^a School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea

^b Make-up Lab., Kolmar Korea, Seoul, 06792, Republic of Korea

^c Vienna University of Technology, Institute of Applied Physics, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria

Fig. S1 Lignin-activated carbon composites specimen at pH 2 solution before drying and after drying.

Fig. S2 Zeta potential of lignin at various pH solutions (pH 2 ~ pH 10), adjusted with HNO₃ and NaOH.

Fig. S3 Schematic illustration of lignin swelling in 50 mM solution at low pH and high pH, respectively.

Fig. S4 Decay length fitting at SFA force–distance profiles of lignin–lignin interactions in (a) pH 2, (b) pH 4, (c) pH 7, and (d) pH 10.

Fig. S5 Photograph of prepared lignin solution (5 mg/ml) in water with different pH conditions: 2.0, 4.0, 7.0, 10.0.

Fig. S6 QCM-D measurements of lignin adsorption on each SAM coated gold surface; (a) C_6H_5 , (b) NH_2 (c) CH_3 , (d) COOH, and (e) OH. Blue and orange arrows indicate injection of buffer and lignin solution, respectively.

рН	2	4	7	10
Amount of NaOH [mg]	48.6	99.5	100.0	100.5
Amount of 10 M HNO ₃ solution [ml]	0.25	0.25	0.25	0.25
Additional amount of NaNO ₃ [mg]	267.6	213	212.5	212.0

Table S1 Amount of sodium hydroxide, nitric acid, and sodium nitrate in total volume of solution at each pH buffer solution.

Functionalized SAM	pKa ¹⁻³
11-hydroxy-1-undecanethiol (OH-SAM)	16-18
10-carboxy-1-decanethiol (COOH-SAM)	5.5
2-phenylethanethiol (C ₆ H ₅ -SAM)	-
1-undecanethiol (CH ₃ -SAM)	-
11-amino-1-undecanethiol hydrochloride (NH ₂ -SAM)	7.5

Table S2 pK_a values of each SAM tested in this research.

 Table S3 The theoretical and fitted Debye-length value from decay length fitting

рН	2	4	7	10
Debye length, κ^{-1} ; nm (Theoretical)	1.923	1.923	1.923	1.923
Decay length, λ^{-1} ; nm (Fitted)	1.942 ± 0.043	1.916 ± 0	1.900 ± 0.170	10.610 ± 0.666

Supplementary References

- 1. G. C. Shields, *Computational approaches for the prediction of pKa values*, CRC Press, 2019.
- 2. H. Zhang, H.-X. He, J. Wang, T. Mu and Z.-F. Liu, *Applied Physics A*, 1998, **66**, S269-S271.
- 3. D. V. Vezenov, A. Noy, L. F. Rozsnyai and C. M. Lieber, Journal of the American Chemical Society,

1997, **119**, 2006-2015.