Supplementary Information

Cu₃P@CoO Core-shell Heterostructure with Synergistic Effect for Highly

Efficient Hydrogen Evolution

Chuan Gang[†], Jiayi Chen[†], Xu Li[†], Bo Ma^{†,*}, Xudong Zhao^{†,*}, Yantao Chen^{†,‡,*}

[†]*Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials*

Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

[‡]Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

*Corresponding author:

harrymb@email.tjut.edu.cn (Bo Ma)

zxdwan@126.com (Xudong Zhao)

chenyantao@tjut.edu.cn (Yantao Chen)

Details of DFT calculations

The DFT calculations are carried out by the Vienna ab-initio simulation package software $(VASP)^{1-3}$. The projector augmented wave method $(PAW)^4$ with Perdew, Burke, and Ernzerhof functional $(PBE)^5$ is used. The energy cutoff is set at 500 eV. $(5 \times 5 \times 5)$, $(3 \times 3 \times 3)$, $(3 \times 3 \times 1)$, $(3 \times 3 \times 1)$, $(1 \times 1 \times 1)$ k-point mesh are used for bulk CoO, bulk Cu₃P, CoO (111) surface, Cu₃P (300) surface, and Cu₃P@CoO, respectively. The convergence tolerance is set at 10^{-4} eV. For the systems containing Co, spin-polarization is considered. The bulk and surface models of CoO are both regarded as antiferromagnetism.

Model structures

The CoO (111) and Cu₃P (300) slabs with vacuum width of 15 Å are built from bulk CoO (space group Fm-3m) and bulk Cu₃P (space group P6₃cm) with (3×3) and (1×1) surface periodicity, respectively. Cu₃P@CoO is built with (5×3) CoO (111) surface and (2×2) Cu₃P (300) surface. The lattice mis-match is less than 5.5%.

HER mechanism

The HER steps in alkaline solutions could be written as:

$$H_20 + *+e^- \rightarrow H *+ 0H^-$$
 (1)

$$H_2O + e^- + H * \rightarrow H_2 + OH^-$$
 or $H * + H * \rightarrow H_2$ (2)

The Gibbs free energies are calculated as follows:

$$G = E_{DFT} + E_{ZPE} - TS_{(3)}$$

where E_{DFT} is the energy obtained by DFT calculations, E_{ZPE} is the zero-point energy (ZPE) correction, T is 298.15 K, and S is the entropy. The free energy of liquid H₂O at 298.15 K equals to that of gas H₂O at 0.035 bar.

Vibrational frequency of H⁺ and OH⁻ obtained by DFT is used to evaluate the ZPE and entropy change, and the latter one could be calculated as follows:

$$S(T) = \sum_{i=1}^{3N} \left[-Rln \left(1 - e^{-\frac{hv_i}{k_B T}} \right) + \frac{N_A hv_i e^{-\frac{hv_i}{k_B T}}}{T - e^{-\frac{hv_i}{k_B T}}} \right]$$
(4)

Four states in the HER process are mainly considered, *i.e.*, initial state, activated H_2O state, adsorbed H state, and final state. The Gibbs free energy of each state is calculated as follows:

 $G_{0} = G_{*} + G_{H_{2}O_{(5)}}$ $G_{1} = G_{H_{2}O_{*}} (6)$ $G_{2} = G_{H_{*}} + G_{OH^{-}(7)}$ $G_{3} = G_{*} + G_{OH^{-}} + \frac{1}{2}G_{H_{2}} (8)$

The change of Gibbs free energy for each intermediate is as follows:

$$\Delta G_{H_20*} = G_1 - G_0 \tag{9}$$
$$\Delta G_{H*} = G_2 - G_3 \tag{10}$$

DFT simulated energies, ZPE and entropy corrections, and free energies of H_2 (g), H_2O (l), H^* , and H_2O^* , as well as the Gibbs free energy in each step of HER are provided in Table S1 and S2, respectively.

Fig. S1. XRD pattern of Cu(OH)₂/CF.

Fig. S2. XRD pattern of Cu₃P/CF.

Fig. S3. XRD pattern of CoO/CF.

Fig. S4. SEM images of Cu(OH)₂/CF.

Fig. S5. SEM images of Cu₃P/CF.

Fig. S6. SEM images of CoO/CF.

Fig. S7. EDX spectroscopy of Cu₃P@CoO-4.

Fig. S8. CV curves for estimation of C_{dl}.

Table S1. DFT simulated energies, ZPE and entropy corrections, and free energies of $H_2(g)$, $H_2O(l)$, H^* , and H_2O^* .

	$E_{DFT} (eV)$	ZPE-TS (eV)	G (eV)
H ₂ O (l)	-14.232	-0.101	-14.334
H ₂ (g)	-6.773	-0.135	-6.908
CoO (111)			
H*	-278.087	0.308	-277.779
H_2O^*	-289.526	0.422	-289.104
Cu ₃ P (300)			
H*	-146.423	0.172	-146.251
H ₂ O*	-156.617	0.468	-156.149
Cu ₃ P@CoO			

H*	-1151.475	0.322	-1151.153
H_2O^*	-1162.578	0.389	-1162.189

Table S2. The Gibbs free energy in each step of HER.

	$G_0(eV)$	$G_1(eV)$	$G_2(eV)$	$G_3(eV)$
CoO (111)	-288.252	-289.104	-288.659	-288.252
Cu ₃ P (300)	-156.826	-156.149	-157.131	-156.826
Cu ₃ P@CoO	-1161.837	-1162.189	-1162.033	-1161.837

References

- 1. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169.
- 2. G. Kresse and J. Furthmüller, *Computational Materials Science*, 1996, 6, 15-50.
- 3. G. Kresse and J. Hafner, *Physical Review B*, 1993, 47, 558.
- 4. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865.