

Electronic Supplementary Information

Figure S1. TEM micrographs of (a) $GdF_3@EG$ and (b-d) $GdF_3@PSSMA$ particles prepared with (b) 1, (c) 5, (d) 15 mg of PSSMA/ml in the feed, and (e) $GdF_3@PSSMA-PSDA-A488$ nanoparticles.

Figure S2. Calibration curve of GdCl₃ (0-70 μ M of Gd³⁺) determined by xylenol orange (18 μ M) and the amount of free Gd³⁺ (5.5 μ M; red circle) released from aqueous GdF₃@PSSMA-PSDA-A488 (3.7 mM of Gd³⁺) dispersion stored at RT for 40 days.

Figure S3. Effect of GdF₃@PSSMA-PSDA-A488 nanoparticles (NPs) on degranulation in (a) RBL and (b) BMMC cells. Degranulation in IgE-sensitized cells incubated with particles and antigen for 30 min. Degranulation was measured by β -hexosaminidase release and performed in RPMI 1640 medium without phenol red. The data represent the mean \pm S.D. (n = 3 for RBL; n = 4 for BMMC) from the independent experiments performed in triplicates. Two-tailed unpaired Student's t test was performed to determine statistical significance. Activation of IgE-sensitized (1 µg/ml) cells by Ag (100 ng/ml) served as the positive control.