Dynamic electric-field-induced magnetic effects in cobalt oxide thin films: towards magneto-ionic synapses

S. Martins,^a J. de Rojas, ^a Z. Tan, ^a M. Cialone,^b A. Lopeandia, ^c J. Herrero-Martín, ^d J. L. Costa-Kramer,^e E. Menéndez,* ^a Jordi Sort* ^{a,f}

^{b.} CNR-SPIN Genova, C.so F. M. Perrone 24, Genova, 16152, Italy

^d ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain

e IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain

f. Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain

A- Experimental Setup

Fig. S1. Schematic showing the home-made electrolytic cell used for the of voltage actuation and magnetoelectric characterization by VSM.

[.] a. Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spai; *Email: Enric.Menendez@uab.cat, Jordi.Sort@uab.cat}

^c Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, E-08193 Barcelona, Spain

Fig. S2. Schematic of the EDL formation. Note that, for simplicity, the Na⁺ ions and the propylene carbonate changes are drawn separately although, most likely, Na⁺ ions become solvated when dissolved in the electrolyte.

Fig S3. HRTEM image of a thin (25 nm) CoOx film treated with high negative voltage (–50 V) for 30 min. The squares A and B indicate crystallites whose lattice cell parameter matches the position of HCP-Co as evidenced by the fast Fourier transforms presented at the bottom left corner of the image: "1" and "2" represent an interplanar distance of 1.90 Å which matches the (101) direction of HCP-Co and "3" and "4" represent an interplanar distance of 2.15 Å which matches the (100) direction of HCP-Co. The majority of the other crystals seen by HRTEM correspond to either CoO or Co_3O_4 .

B- Further Magnetoelectric measurements

Fig. S4. Dependence of magneto-ionic effects on the cobalt oxide film thickness. Panels a–d show consecutive hysteresis loops corresponding to cobalt oxide films of 15 nm thickness, respectively, upon electrolyte gating ($\Delta V = -50 \text{ V}$) acquired using a vibrating sample magnetometer (magnetic field applied in-plane).

Fig. S5. (a) Time evolution of derivative of the saturation magnetization (dM_s/dt) as a function of the cobalt oxide film thickness, acquired while applying an in-plane magnetic field of 10 kOe.

Fig. S6. Magnetic recovery effects evidenced by measuring two consecutive hysteresis loops after having actuated the cobalt oxide films for 1000 s using –50V/0V voltage pulses at frequencies of (a) 1 Hz, (b) 10 Hz and (c) 100 Hz. (d) the same recovery experiment after applying a DC voltage of –50V for 1000 s.