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S1 Methods

Charge carriers are described as quantized particles in a in�nite 3D potential well governing
the following wave functions in terms of the quantum numbers n,m and j:

Ψn,m,j =

√
8

LxLyL
sin

(
nπx

Lx

)
sin

(
mπy

Ly

)
sin

(
jπz

L

)
(S1)

with the wire extending from z = 0 to L in z-direction and from zero to Lx,y in perpendicular
directions. The wires are assumed to be much longer than their thickness Lx,y. As the wire's
transversal dimensions are considered much smaller than the length, we need to consider
only transition elements in z-direction for the mobility since the transition energies in x-
or y-direction are much higher in energy than the THz photon energy ~ω. Hence, due to
strong o�-resonance the probability of perpendicular transitions is very low due to the energy
denominator in Equation 1 (main text). In contrast, in the extended z-direction the (lowest)
energy level spacing is in the meV range (18 meV for a 20 nm wire length with me = 0.31
m0 and hence near resonant to typical THz photons of 0.1 to 3 THz (0.4 to 12 meV)). For
these reasons we can safely neglect x- and y-related intraband transitions for thin rods and
wires and concentrate on the i → j transitions in z-direction. However, the product ansatz
in Equation S1 takes care of a proper evaluation of the matrix elements in Equation 1 from
the main text, as the x- and y-direction integrals just result in unity factors once the integral
is factorized, since the quantum state |n = 1,m = 1, j〉 of the charge maintains its lowest x
and y quantum state. The corresponding full energetic description is given by

En,m,j =
π2~2

2m∗

(
(n/Lx)

2 + (m/Ly)
2 + (j/L)2

)
. (S2)

Again, as L = Lz � Lx, Ly, we will be only concerned with transitions in the z-direction,
so that the energy di�erence between to states j and i will become

Ej − Ei =
π2~2

2m∗L2

(
j2 − i2

)
. (S3)

Given the basis functions above and assuming full polarization of the THz �eld in the z-
direction, we can evaluate the matrix elements via pz = −i~ d/dz

〈Ψj|e · p|Ψi〉 = 〈Ψj|pz|Ψi〉 = −i2~
(−1 + (−1)i+j) i j

(i2 − j2)L
(S4)

Equation S4 imposes a quasi selection rule within Equation 1 from the main text, as with
increasing j at a �x i the matrix element drops rapidly to zero due to the denominator. Term
A (Equation 1 main text) for the second dipole allowed transition |1〉 → |4〉 is already a factor
of 30 smaller than that of the �rst |1〉 → |2〉 transition. Further higher transitions have even
bigger ratios to the �rst transition. Hence only transitions from an initial state to the
(energetically) nearest �nal states have considerable transition probability. We emphasize,
that di�erent con�nement potentials �like a shallow well with low con�nement potential� will
alter e.g. the population density dependence of the mobility (see main text), as the matrix
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elements above and the energy denominator in Equation 1 or 4 (main text) are altered for
the concatenated states.

Equation 4 from the main text is �nally retrieved, expanding the Lorentzian lineshape
function. We already include the imaginary unit i from the prefactor in Equation 1 (main
text) here for clearness.

i

Ej − Ei − ~ω − i~Γ
=

−~Γ

(Ej − Ei − ~ω)2 + (~Γ)2︸ ︷︷ ︸
Real Contribution to σ(ω)

+ i
Ej − Ei − ~ω

(Ej − Ei − ~ω)2 + (~Γ)2︸ ︷︷ ︸
Imaginary Contribution to σ(ω)

(S5)

S2 Phase Response

Figure S1 shows the phase angle resulting from real and imaginary electron (hole) mobilities
at di�erent nano wire length under variation of excitation frequency (a+b) and number of
charge carriers (i.e. population, c+d). The phase course in (a+b) deviates from the Drude
response1 or Lorentz-oscillator model, which increases with frequency from 0 to π/2 for
the former. For low T and low frequency in (a) the response is similar to a driven single
harmonic oscillator, depending on the relative detuning of THz photon and transition energy.
The THz radiation is strongly sub resonant to the 1D domain electronic transitions, so that
a domain prolongation results in an approach to the resonance with increasing real part of
the conductivity, so that the (negative) phase angle is reduced. For higher frequencies more
transitions become near resonant leading to a steep slope and slight wiggles. For high THz
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Figure S1: Length dependent Phase response for CdSe nanowires under (a) variation of
excitation frequency, assuming a single electron/hole and (b) variation of population of
charge carriers, assuming excitation at 1 THz.
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frequencies (at 10K), the resonance to the lowest transition is reached (near 20 nm length)
and the phase is transitioning from −π/2 to π/2. This can be seen as the dephasing of
Γ = 8·1011s−1 at 10K is of the same order of magnitude as the detuning ∆ω = (Ej−Ei)/~−ω,
of the order of 1THz. At elevated temperatures (300K) this is not the case (Γ = 5 · 1013s−1)
and the dephasing dominates. Increasing dephasing and the involvement of multiple states at
elevated temperature (b) results in a randomization of the total phase angle associated with
a near zero value. The contribution of each additional level �approaching in energy once the
wire length is increased� is added incoherently, resulting in the observed quasi zero phase for
long L in (b). In case of varying number of initial charge carriers at 10K, the excitation of
1 THz is always quasi-resonant to at least some transitions (Figure S1 c), once the a certain
length (25 nm, compare to yellow curve in (a)) is reached. The higher density of states with
increasing length results, as before, in wiggles and an increasing phase response. Allowing
more initial charge carriers, however, elevates the Fermi level and thus only transitions of
higher resonance will contribute to the real and imaginary part. This can be seen in (c),
as even higher length are necessary before resonance between higher states and the 1 THz
excitation is reached. In case of 300K, as discussed before, a phase randomization occurs,
which is quasi-independent of length, as the position of the very broad Fermi edge is no
longer crucial for selecting speci�c transitions.

S3 Impact of Dephasing on µ(ω)

As an additional aspect, we investigate with respect to Equations 1 and 4 from the main text
how dephasing impacts the conductivity and mobility of our nano systems. Figure S2 shows
the frequency-dependent mobility of a CdSe wire of 20 nm length at various dephasing rates.
A �rst observation is that both at low and high temperature higher dephasing increases the
real mobility in our CdSe wire. For low dephasing rates the real part of the conductivity
is directly proportional to the dephasing rate Γ in Equation S5 and 9 (main text). This is
observed due to the fact, that the denominator is not dominated by the dephasing, but the
detuning, hence in o�-resonant cases. We included here the prefactor i from Equation 1 (main
text) to Equation S5 to show that the dephasing Γ acts on the real part of the conductivity
numerator. The negative Fermi occupation di�erence at �nite temperature in Equation 1
and 4 (main text) results then in a positive real part of the conductivity and mobility, while
the imaginary part is negative for sub resonance, see Figure S2. For the highest dephasing
rate (1014/s) this is e.g. not the case any more, so that the mobility does not increase with
frequency till the �rst resonance for the real part, as the real part in Equation S5 becomes
constant. Comparing further the real part for 10K and 300K for not excessive dephasing
we see that in both cases the real part increases (in the sub resonant regime) with frequency
as in Figure 1 (main text), as well as that the small e�ective mass di�erence for electron and
hole results in minor changes. However, the mobilities at 300K in Figure S2 are always lower
than for 10K, even for an identical dephasing rate, an unexpected result. Hence, it is not the
result of e.g. altering phonon or impurity scattering. The reason for it relates to the Fermi
occupation di�erence term in Equation 1 or 4 (main text). With increasing temperature the
thermal Fermi distribution �which has a width of ±kBT� gets broader so that the di�erences
in the populations for the nearest states in energy become smaller at elevated temperatures.
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Figure S2: Frequency dependent real (a+c) and imaginary (c+d) mobility of 20 nm CdSe
nanowires for varying dephasing at 10K and 300K under the assumption of one charge
carrier per domain.

Hence the f(Ej)− f(Ei) factor, that scales the matrix elements is reduced.
Further, due to the mentioned rapid decrease of the transition strength with increasing

quantum number di�erence of initial and �nal state and the Ej−Ei energy denominator only
nearby states (j-i small) contribute signi�cantly. These three factors together reduce the real
mobility at elevated temperature by an order of magnitude, a remarkable e�ect, and already
without the involvement of any changes in the dephasing rate by temperature dependent
phonon scattering. Hence, in contrast to frequent claims in literature, the temperature
dependence of the charge carrier mobility in a nanosystem is not only based on phonon
or impurity scattering, but also on the thermal broadening of the Fermi edge. We remark
that we use temperature-dependent dephasing rates of 8 · 1011s−1 at 10K and 5 · 1013s−1 at
300K in CdSe, as mentioned above, in the other �gures, so that the mobility ratio between
10 and 300K gets even bigger than by the thermal population e�ect only and can reach
nearly two orders of magnitude (see Figure 1, main text). In the case of high dephasing
the imaginary part of the mobility in Figure S2 (b+d) nearly vanishes as compared to the
real part, expected from Equation S5. For decreasing dephasing its negative value increases
until some saturation curve is reached, where the detuning dominates the denominator of
Equation S5. Overall the negative imaginary mobility is always bigger at 10K than at 300K.

These e�ects can be also seen in the length dependencies for variable dephasing, plotted
in Figure S3. Unlike Figure 2 (main text), we can observe for low dephasing each resonant
transition, which adds to the total mobility, once the wire length increases and hence the THz
photon energy becomes subsequently resonant to the lowest and higher transitions (Figs. S3
a,b,d,e). The real mobility is in-line with Figure S2 lower at lower dephasing and higher
temperature for e.g. a �xed length of 20 nm. In the sub-resonant regime the absolute values
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Figure S3: Lateral length dependence of the real (a+d) and imaginary (b+e) mobility as
well as phase angle due to retardation (c+f) for CdSe nanowires at 10K and 300K under
the assumption of one charge carrier per domain at 1 THz.

of real and imaginary conductivity increase with wire length. For the case of low dephasing
rates sharp resonances with high mobilities occur, which result in square- or delta-like (c+f)
phase responses. For dephasings of at least 1012/s the course of the mobility and phase is
smooth again.

S4 Comparison with Experiments

The calculation of the conductivity according to the Kubo-Greenwood model requires knowl-
edge of the number of present charge carriers on the nanoparticle. On the one hand this is
in�uenced by the number of absorbed pump photons in an optica pump-THz probe experi-
ment, on the other hand will some of the initially formed electrons and holes form excitons.
Hence just a fraction of excitations result in free carriers, that will exhibit their speci�c
conductivity.

A CdSe nano rods

For calculation we use a dephasing constant of Γ = 0.3·1013 s−1 at room temperature,2 and
otherwise CdSe nanorod parameters as discussed in the main text. The curves in Figure 5
(main text, a+b, turqoise and orange) are obtained by scaling the modeled conductivity with
the sample thickness. This is to obtain the experimentally measured sheet conductivity σs.

3
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We note, that the scaling factor of d̃ = 1.2 µm contains the volume fraction (d̃ = fV · d), as
a 1 micron layer of pure CdSe nanorods would not leave any detectable terahertz radiation
in the probe beam after absorption in the sample.

A.1 Number of absorbed Photons

The average number of photons absorbed by a single nanorod in a single pump excitation
pulse of FWHM τ can be approximated as

Nabs = σ(1)(λ) · Φ(λ) · τ. (S6)

Here, σ(1) is the single photon absorption cross-section (in cm2) and Φ the photon-�ux density
(in photons/m2s). While Φ is linked to experimental parameters as pulse energy Ep (72 nJ)

4

and focal spot diameter dsp (2.2 mm)
4 or focal spot area Asp (m

2), according to

φ =
I

h ν
=

Ep
Asp τ h ν

=
4Ep

πd2sp τ h ν
, (S7)

the absorption cross-section is not only substance-speci�c, but also a particle shape-speci�c
property, that is determined by the intrinsic absorption coe�cient µi (3·107 m−1 from Ref.
5) and the particle volume (Vpart = 640 nm3).4

σ(1) = µi · Vpart. (S8)

For the mentioned parameters we obtain a total number of absorbed photons per pulse of
Nabs = 0.73 photons/particle.

A.2 Formation of Excitons

Initially photocreated charge carriers in a nano rod or wire will undergo exciton formation
according to the 1D Saha equation.6,7 The yield of charges and excitons at room temperature
depends on the exciton binding energy�here taken as 190 meV,8�and is calculated as

ne nh
nx

=
n2
c

nx
=

(
2µehkB T

π~2

) 1
2

· e
−EB,x
kB T , (S9)

nc + nx = n1D, (S10)

where EB,x is the exciton binding energy, µeh the reduced mass of the electron-hole-pair and
n1D is the 1D density of excitations n1D = Nabs/L. We note, that eq. S10 does not require
ne + nh + nx = n1D, as a photon creating an electron likewise generates a hole at the same
time. As a result we �nd the fraction of charge carriers φc and excitons φx to be 4 % and
96 %. Hence, on average Nabs · φc = 0.04 electrons (holes) are formed per excitation on the
nano rod.
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A.3 Uncertainty estimation

We estimate the the impact of a length dispersion of the considered nano wires on the
uncertainty (∆σR) of the real and (∆σI) of the imaginary conductivity in Equation 1 and 9,
depending on the domain length Lz (main Text):

∆σ =

(
∂σ

∂Lz

)
∆Lz (S11)

Using V = Lx Ly Lz, we reformulate Equation S11 for the real part as:

∆σR = −
∑
ij

8q2e~
m∗π2LxLy

(−1 + (−1)i+j)2i2j2~Γ

(i2 − j2)3︸ ︷︷ ︸
Bij

∂

∂Lz

(
1

Lz

f(Ej)− f(Ei)

(E0(j2 − i2)− ~ω)2 + (~Γ)2

)
∆Lz

(S12)

Similarly, we write for the imaginary part, using the notation for the prefactor Bi,j as above,

∆σI =
∑
ij

Bij
∂

∂Lz

(
1

Lz

(f(Ej)− f(Ei))(E0(j
2 − i2)− ~ω)2 + (~Γ)

(E0(j2 − i2)− ~ω)2 + (~Γ)2

)
∆Lz. (S13)

B PbSe nano rods

For modeling we use m∗
e = 0.56 m0 and m

∗
h = 0.43 m0,

9 as well as a typical Γ = 1.4·1014
s−1 for nanostructures10�12 at room temperature. Similar to the 1D Saha Equation used
for CdSe nano rods above, we calculate the fraction of charges and excitons in the PbSe
nano rods, employing an exciton binding energy EB,X = 154 meV.7,9 Here, the number of
excitations is given. Table S1 summarizes the fraction of charges (φc) and excitons (φx) for
the speci�ed datapoints (in Figure 5 (c), main text) versus the number of excitatons Ni (i.e.
number of absorbed photons per particle or the sum of e-h pairs and excitons).

Table S1: Resulting fraction of charges (φc) and excitons (φx) from the 1D Saha equation
for a number of absorbed photons Ni per particle .

Ni 1.5 2.2 2.8 3.1 3.5 3.9 5.6 7.9 10.1 14.2 16.3
φc 0.188 0.161 0.142 0.136 0.129 0.123 0.104 0.088 0.078 0.066 0.062
φx 0.812 0.839 0.858 0.864 0.871 0.877 0.896 0.912 0.922 0.934 0.938

After simulating the di�erent single particle conductivity spectra σ(f) = σe(f) + σh(f),
we average over frequency to obtain σ̄

σ̄ =

∫ 1.2THz

0.5THz
(σe(f) + σh(f))df

(1.2− 0.5)THz
. (S14)

Since we are interested in the mobility, we apply µe,h = σe,hV/(Ne,h/; qe) with Nc/V as the
carrier density on the nanoparticle (V = LxLyLz). The number of carriers Nc is given by
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Nc = φc ·Ni. Analogue to the data from Ref. 7, we calculate the real part of the frequency
averaged mobility, weighed with the fraction of carriers according to:

µ̄ =
V

qe φcNi

σ̄ =⇒ φc · µ̄ =
V

qeNi

.σ̄ (S15)

This is then used for the comparison with data in Figure 5 c).

S5 Long Wires: Comparison with Drude- and Plasmon-

Model

In the following section we will compare the results of our Kubo-Greenwood model with
those from a Drude model or a Plasmon model. We will show that for long wires the
classical Drude result is recovered by the the Kubo-Greenwood theory. The Drude Model
(or often also Drude-Lorentz-Model) assumes a non-interacting electron-hole-gas, where the
charge carrier momentum relaxation (or collision rate) is given by a parameter γ = 1/τ . For
the momentum relaxation associated scattering processes it assumes a continuum of states
charge carrier states, associated with a bulk-like density of states. We will brie�y derive
the resultant carrier mobilities for the Drude and Plasmon model to compare them with the
Kubo-Greenwood results and show that coincidence is obtained for long domain size.

The movement of an electron or hole under in�uence of a real external monochromatic
electric �eld E(t) = E0 cos(ωt) of angular frequency ω is described by

d2x

dt2
+ γ

dx

dt
=
qeE(t)

m∗
e/h

. (S16)

As we are interested in the mobility, we use the relation v(t) = dx(t)/dt = µ ·E(t), de�ning
the charge drift velocity v and mobility µ. However, we have to keep in mind, that the
solutions will be obtained in the form of

v(t) =
1

2
E0(µ e

−iωt + c.c.), (S17)

where c.c. stands for complex conjugate. Upon solving Equation S17 one obtains after
di�erentiating x(t)

v(t) =
E0 qe (γ cos(ωt) + ω sin(ωt))

m∗
e/h(γ

2 + ω2)
=

qe
2m∗

e/h(γ
2 + ω2)

[
(γ + iω)e−iωt + c.c.

]
, (S18)

from which we extract the frequency-dependent mobility µ(ω) according to Equation S17

µ(ω) =
qe (γ + iω)

m∗
e/h(γ

2 + ω2)
=

qe
m∗
e/h(γ − iω)

=
qe
m∗
e/h

τ

1− iωτ
, (S19)

where we obtain the in literature well-known σ(ω), when applying σ = qe ne/h µ.
1

In a similar manner, we can generate a solution for the Plasmon model, which is extending
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the equation of motion (Equation S16) by a restoring force term ω2
0x:

d2x

dt2
+ γ

dx

dt
+ ω2

0x =
qeE(t)

m∗
e/h

(S20)

Proceeding with the solution of this driven damped oscillator like before, the mobility is
obtained as

µ(ω) =
qe
m∗
e/h

τ

1− iτ(ω − ω2
0/ω)

=
qe
m∗
e/h

1

γ − i(ω − ω2
0/ω)

. (S21)

While in the Drude-Model a charge undergoes a driven oscillation with and dissipates its
kinetic energy to a reservoir within an average scattering time τ , the charged particle expe-
riences an additional restoring force m∗ω2

0x in the Plasmon-model. The Drude-Model can
thus be understood as the limiting case of the Plasmon-model, with zero restoring force,
implying ω0 = 0THz.

In the following we discuss the results of the di�erent models - Kubo-Greenwood, Drude
and Plasmon - obtained by assuming a 10 nm and 80 nm nano rod at 300 K. The procedure
is such, that we generate with the Kubo-Greenwood model (Γ = 5 · 1013/s, 40 states, 1
electron/hole per nano rod) data and subsequently �t them by Equations S19 and S21 in a
global manner for real and imaginary part. Figure S2 shows the resulting curves for the 10
and 80 nm simulated data, always divided in the real part of µ (a+d), the imaginary part
(b+e) and the phase, de�ned as arctan(Im(µ)/Re(µ)) (c+f).

The obtained �tting parameters (always identical for Re and Im) are shown in Table
S2. As seen from the results and Figure S2 (a+b+c) the agreement of either of the three
models is low for 10 nm nano rod length. This is understood, as for a small nano particles
the energetic spacing between adjacent discrete states is high. Since both, the Drude- and
Plasmon-Model assume a continuum of states inherently, the mismatch is large. However,
it is noteworthy, that the resonance frequency f0 predicted by the Plasmon-model at 10
THz resides in-between the two lowest neighboring transition frequencies f21 and f32 of 8.8
and 14.7 THz in the nano rod, which have presumably the strongest contribution in rods
with such strong lateral con�nement. Summing up, for short nanostructures the quantized
nature of the energy levels makes a treatment of the frequency dependent mobility by the
Kubo-Greenwood approach necessary.

Table S2: Fitting parameters for Drude- and Plasmon-model for nano rods of 10 and 80 nm
length.

Length τ (fs) Γ or γ (1013/s) f0 = 2πω0 (THz)

10 nm
Kubo 20 5 -
Drude 4.6 21.7 -
Plasmon 8.5 11.8 10

80 nm
Kubo 20 5 -
Drude 18.5 5.4 -
Plasmon 18.2 5.5 0.07

S11



Proceeding to the case of a longer nano wire, the agreement of each model with the
Kubo-Greenwood simulations is very high. Especially once the obtained scattering rates γ
are compared to Γ, assumed in the Kubo-Greenwood model. This is understandable, as for
longer wires the energy spacings of the discrete states are strongly reduced and indeed a
quasi continuum of states is involved. It results from the state broadening by dephasing as
well as the thermal distribution of population at room temperature. The mean scattering
constants γ from Drude- and Plasmon-model are in good agreement with the dephasing
constant Γ put into the model (Table S2). For even longer wires the results approach each
other asymptotically, due to the more end more continuous density of states.

While the phase response showed no agreement for small rods (10 nm) in c), in the case
of 80 nm the phase curves overlap in the entire frequency spectrum (f). Also the π/2 phase,
resulting in a zero amplitude at high frequencies, is reproduced in f).
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Figure S4: Comparison of Kubo-Greenwood- with Drude- and Plasmon-model for 10 nm
and 80 nm long nano rods.

This comparison clearly shows, that the classical limit of the Kubo-Greenwood Theory
at wire lengths coincides with Drude- and Plasmon-model predictions and that the param-
eters obtained from �tting do have a meaning in the sense of the Kubo-Greenwood theory.
Nonetheless, it has to be emphasized strongly, that this is not the case for small particles.
The large energy spacing forbids, even with the broad thermal broadening at room tem-
perature, a treatment as a continuum of states and the charge carrier motion can only be
modeled in a quantum mechanical approach, as proposed by our Kubo-Greenwood model.
Finally, we remark that this statement is especially also valid at low temperatures, when
thermal broadening of the states and broadening by thermal population is low. There the
the system can remain in a quantum regime of transport �distinct from Drude or Plasmon
models� even for longer nano wires.
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S6 Guidlines for analysis of experimental THz-mobility

spectra

If it is desired to analyze and �t experimentally obtained conductivity or mobility spectra,
e.g. from optical-pump THz-probe spectroscopy, the following steps may be applied to
compare these spectra to our model.

� Determine system size (e.g. by TEM) and from that the normalization volume V for
Equation (1) and (4)

� Determine the ground state and eigen energies of the electronic system Ei as given in
the main text or Equation S2 (ESI).

� Determine the density of excitations per nanorod. The number of absorbed photons
(see section A.1 of ESI) needs to be determined based on the experimental conditions.
Subsequently the fraction of excitons and electron-hole-pairs is determined via the
Saha-Equation (see section A.2. of ESI). This results in N , the number of negative
(and positive) charge carriers on the domain.

� Determine the population dependent Fermi Energy EF according to Equations (2) and
(3).

� Determine the occupation number f(Ei) for each state to be considered. As a measure
of accuracy of the simulation, sum up the Fermi occupations

∑imax
i=1 f(Ei) = N ·ξ. Here,

ξ is a measure of the accuracy of the mapping of the population on imax electronic states
considered in the simulation. This determines the size of the initial basis. Reasonable
choices could be 0.99 or 0.95 depending on the computational performance.

� Calculate all transition dipole moments for the mentioned basis according to Equation
S4 (ESI).

� Using Equation (4) (main text) the dipole moments and eigen energies are already
included in the summation.

� As re�ected in Equations (1) and (4) a summation over all initial and �nal state
combinations has to be evaluated from the lowest state with i = 1 or j = 1 to imax =
jmax. With the resultant equation a �t to experimental data may be performed.
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