Supplementary Material

Electrical control of topological spin textures in two-dimensional multiferroics

Jiawei Jiang, Rui Li, and Wenbo Mi*

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology,

School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom correspondence should be addressed

Email: miwenbo@tju.edu.cn

Fig. S1. The schematic structures of paraelectric (PE) phase CrB_2 (left panel) and ferroelectric (FE) phase CrB_2 (right panel). For PE CrB_2 , it adopts the antiferromagnetic (AFM) ground state. And for FE CrB_2 , it adopts the ferromagnetic (FM) ground state.

Fig. S2. Spin configurations for the calculations of (a) Heisenberg exchange coupling parameter J and (b) Dzyaloshinskii–Moriya interaction parameter d, showing the ferromagnetic (FM)/antiferromagnetic (AFM) collinear configurations and clockwise (CW)/anticlockwise (ACW) chiral configurations, respectively.

Fig. S3. Calculated normalized magnetization versus temperature for CrB_2 , $HgInP_2O_6$, $CuCrP_2S_6$, $CuCrP_2Se_6$, $CuVP_2S_6$, and $CuVP_2S_6$, and $CuVP_2S_6$ monolayers.

Fig. S4. Atomic-layer-resolved localization of DMI energies ΔE_{DM} for HgInP₂O₆ monolayer.

Fig. S5. The DMI vectors D_{12} (red vectors) between the nearest neighbors of Cr atoms (red balls) in CuCrP₂Se₆ with opposite polarizations, where the displacement of Cu atoms (blue balls) along the plane normal causes out-of-plane polarization.