SUPPORTING INFORMATION

Alkyl Selenol Reactivity with Common Solvents and Ligands: Influences on Phase Control in Nanocrystal Synthesis

Eric A. Ho, Antony R. Peng and Janet E. Macdonald

Table of contents

Tab. S1:	NMR Parameters
Figs. S1-S18:	^1H NMR of all DDSeH and ligand combinations at 25 °C, 155 °C and 220 °C3
Figs. S19-S25:	77 Se NMR of all DDSeH and ligand combinations at 25 $^\circ C$ and downfield 77 Se NMR of DDSeH + oleic acid at 220 $^\circ C$
Fig. S26:	⁷⁷ Se NMR DDSeH in wet stearic acid and pXRD products from NC synthesis15
Figs. S27-S28:	pXRD analysis of lead acetate paper16
Fig. S29:	pXRD analysis of saturated amines of varying lengths17
Fig. S30:	pXRD analysis of NC synthesis from ODE with high-temperature preheat step17

	¹ H-NMR	⁷⁷ Se-NMR	⁷⁷ Se-NMR (for upfield detection of TOP:Se)
Number of Scans	16	128	128
Spectral Width (ppm)	13	1000	1000
Recycle Delay (s)	-	5	5
Centre Shift (ppm)	5	250	-500

 Table S1: NMR parameters used for ¹H and ⁷⁷Se experiments.

¹H NMR of all DDSeH and ligand combinations at 25 °C, 155 °C and 220 °C.

Figure S1: ¹H NMR of DDSeH and ODE at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S2: ¹H NMR of DDSeH and ODE at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S3: ¹H NMR of DDSeH and ODE at 220 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S4: ¹H NMR of DDSeH and oleylamine at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S5: ¹H NMR of DDSeH and oleylamine at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S6: ¹H NMR of DDSeH and oleylamine at 220 °C in CDCl₃. Dioxane internal standard at δ = 3.71

Figure S7: ¹H NMR of DDSeH and oleic acid at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S8: ¹H NMR of DDSeH and oleic acid at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S9: ¹H NMR of DDSeH and oleic acid at 220 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S10: ¹H NMR of DDSeH and stearylamine at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71

Figure S11: ¹H NMR of DDSeH and stearylamine at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S12: ¹H NMR of DDSeH and stearylamine at 220 °C in CDCl₃. Dioxane internal standard at δ = 3.71

Figure S13: ¹H NMR of DDSeH and stearic acid at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S14: ¹H NMR of DDSeH and stearic acid at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71

Figure S15: ¹H NMR of DDSeH and stearic acid at 220 °C in C₆D₆. Dioxane internal standard at δ = 3.71 ppm

Figure S16: ¹H NMR of DDSeH and DOE at 25 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S17: ¹H NMR of DDSeH and DOE at 155 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S18: ¹H NMR of DDSeH and DOE at 220 °C in CDCl₃. Dioxane internal standard at δ = 3.71 ppm

Figure S19: ⁷⁷Se NMR of DDSeH and ODE at 25 °C in CDCl₃.

Figure S20: ⁷⁷Se NMR of DDSeH and ODE at 25 °C in CDCl₃.

Figure S21: ⁷⁷Se NMR of DDSeH and oleic acid 25 °C in CDCl₃.

Figure S22: ⁷⁷Se NMR of DDSeH and stearylamine at 25 °C in CDCl₃.

Figure S23: ⁷⁷Se NMR of DDSeH and stearic acid at 25 °C in CDCl₃.

Figure S24: ⁷⁷Se NMR of DDSeH and DOE at 25 °C in CDCl₃.

Figure S25: Upfield scan ⁷⁷Se NMR of DDSeH and oleic acid at 220 °C in CDCl₃

Figure S26: ⁷⁷Se NMR and pXRD experiments illustrating that failure to properly dry/degas stearic acid produces the hexagonal phase of Cu_{2-x}Se nanocrystals.

pXRD Analysis of Lead Acetate Paper

Figure S27: pXRD of lead acetate paper placed in reaction headspaces for studies at 155 °C. The formation of PbSe is indicative of H₂Se gas evolution.

Figure S28: pXRD of lead acetate paper placed in reaction headspaces for studies at 220°C. The formation of PbSe is indicative of H_2 Se gas evolution.

Figure S29: pXRD of copper selenide products from syntheses prepared in the presence of dodecylamine, tetradecylamine, hexadecylamine and stearylamine. Calculated patterns for cubic berzelianite $Cu_{2-x}Se$ and hexagonal $Cu_{2-x}Se$ used for Rietveld refinements of percent composition reported in Figure 3. All refinements have $X^2 < 3$.

Figure S30: pXRD of copper selenide products from synthesis using ODE. DDSeH and ODE were preheated for 1 hr at 220 °C then cooled to 155 °C before Cu precursor injection.