Supplementary Information

Electronic properties of double-atom catalysts for

electrocatalytic oxygen evolution reaction in alkaline: A DFT

study

Chunhua Yang ^a, Yang Wu ^a, Yuxiu Wang ^b, He-Na Zhang ^a, Liang-Hui Zhu ^a, Xiao-

Chun Wang^{a,*}

^a Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012,

P.R. China

^b Department of Ecology and Environment, Yuzhang Normal University, Nanchang,

330103, P.R. China

* Corresponding Author. <u>wangxiaochun@jlu.edu.cn</u>

Calculation details

1. Formation energy (E_f), binding energy (E_b) and cohesive energy (E_{coh})

In order to adopt the optimal coordination configurations of the 2TM embedded in nitrogen-decorative graphene, the formation energy (E_f) of 2TM-NG was calculated by using the Eq. s1 [S1,S2]:

$$E_{f} = E_{2TM-NG} + 10\Box c - (E_{Gra} + 6\mu_{N} + \mu_{TM1} + \mu_{TM2})$$
(Eq. s1)

where E_{2TM-NG} is the total energy of 2TM-NG, E_{Gra} is the total energy of the pristine 7×7 graphene supercell and μ_{C} is the chemical potential of C atom [S3,S4], and μ_{N} is the chemical potential of N atom taken from a N₂ molecule in the gas phase [S5]. μ_{TM1} and μ_{TM2} are the chemical potentials of transition metals (Fe/Co/Ni in its bcc/hcp/fcc bulk structures, respectively) [S6].

In order to prove that the $N_{PA}G$ and N_PG can exhibit higher chemical activity and trap 2TM (FeCo, FeNi, CoNi), the binding energy (E_b) between the 2TM and the substrate was studied and defined as Eq. s2 [S7]:

 $E_b = E_{2TM-NG} - E_{NG} - E_{TM1} - E_{TM2}$ (Eq. s2)

where E_{2TM-NG} and E_{NG} represent the total energy of 2TM-NG and NG, respectively. E_{TM1} and E_{TM2} is the electronic energy of isolated transition metal atom (Fe, Co or Ni), and a lattice constant of 17.15 Å × 17.15 Å × 18.00 Å was used for this computation.

Due to the large cohesive energy (E_{coh}) of TM bulk, the feasibility of atomically dispersed 2TM-NG catalysts need to be further assessed [S8].

$$E_{coh} = E_{bulk} / n - E_{TM}$$
(Eq. s3)

where E_{bulk} is the energy of TM bulk, n is the number of atoms in the bulk, E_{TM} is the energy of free TM.

2. Gibbs free energy

The four elementary steps for OER process under alkaline conditions are shown in Eq (1-4). The Gibbs free energies ΔG_{OH^*} , ΔG_{O^*} and ΔG_{OOH^*} , which correspond to OH*, O* and OOH* adsorption on the electrocatalyst models, were calculated according to Eq. s4 [S9]:

$$\Delta G_{ads} = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S_{ads} - \Delta G_{U}$$
 (Eq. s4)

where ΔE_{ads} is the electronic adsorption energy, ΔE_{ZPE} is the zero-energy calculated from the vibrational frequencies, ΔS_{ads} is the entropy change, and T is the system temperature (298.15 K). $\Delta G_U = neU$, where n is the number of transferred electrons, e is the elementary charge, and U is the electrode potential referenced to computational hydrogen electrode (CHE) model. At equilibrium potential U₀, some of the OER steps become uphill and an applied potential U is needed to surmount the positive free energy change. Thus, the over-potential is determined as $\eta = U - U_0$.

The free energy of H₂O(*l*) derived as $G_{H2O(l)} = G_{H2O(g)} + RTln(p/p_0)$ since only $G_{H2O(g)}$ can be directly obtained by DFT calculations, where R is the ideal gas constant, T = 298.15 K, p = 0.035 bar, and p₀ = 1 bar. The free energy of OH⁻ was derived as $G_{OH^-} = G_{H2O(l)} - G_{H^+}$, where $G_{H^+} = 1/2G_{H2} - k_BTln10 \times pH$ (k_B is Boltzmann's constant). Hence, the equilibrium potential U₀ for OER at pH = 14 was determined to be 0.402 V vs NHE according to the Nernst equation, where the reactant and product are at the same energy level [S10].

Since it is difficult to obtain the exact free energy of OH, O and OOH radicals in the electrolyte solution, the Gibbs free energies ΔG_{OH^*} , ΔG_{O^*} and ΔG_{OOH^*} are defined as Eq. s5-s10:

(Eq. s5)
(Eq. s6)
(Eq. s7)
(Eq. s8)
(Eq. s9)
(Eq. s10)

Electrocatalysts	Electrolyte	Overpotential	Tafel slope	Reference
		$@ 10 \text{ mA cm}^{-2}$	(mV dec ⁻¹)	
		(mV)		
TiN@Ni ₃ N	0.1 M KOH	350	93.70	[S11]
FeNi ₃ N-NPs	1.0 M KOH	280	46.00	[S12]
Ni ₃ FeN	1.0 M KOH	223	40.00	[S13]
FeNi ₃ N/NF	1.0 M KOH	202	40.00	[S14]
MNCC4	1.0 M KOH	290	65.00	[S15]
Co-FeN@MWCNT	1.0 M KOH	290	32.00	[S16]
Ni ₃ FeN-NP	1.0 M KOH	241	59.00	[S17]
CoFe(3:1)-N	1.0 M KOH	200	42.44	[S18]
Ni ₃ FeN/r-GO	1.0 M KOH	270	54.00	[S19]
$Co_{0.5}Fe_{0.85}NSs$	1.0 M KOH	266	30.00	[S20]

Table S1 A summary of OER performance of dual transition metals nitrides

Table S2 Solvation energy (E_{solv}) of catalytic reaction intermediates, η /vac and η /sol for the OER reactions of FeCo-NG and FeNi-NG.

		FeCo	FeCo	FeCo	FeNi	FeNi	FeNi
		-N _{PA} G	-N _P G	-N _P G-O	-N _{PA} G	-N _P G	-N _P G-O
Б	OH*	-0.04	0.06	0.17	-0.05	0.03	-0.16
E _{solv} (eV)	0*	-0.09	0.02	-0.21	-0.07	0.06	-0.23
	OOH*	-0.10	-0.13	-0.19	-0.11	-0.15	-0.23
η/vac (eV)		0.42	1.41	0.98	0.65	1.49	0.91
η/sol (eV)		0.31	1.26	1.00	0.61	1.28	0.91

Table S3 The amount electrons (|e|) of N atoms and nearby C atoms in NG and CoNi –NG. The amount of electron changes ($\Delta |e|$) of N atoms and nearby C atoms when CoNi atoms embedded in NG.

		N _{PA} G	CoNi-N _{PA} G	N _P G	CoNi-N _P G	
	Ν	-5.56	-6.91	-6.69	-7.26	
<i>e</i>	С	5.43	4.83	6.99	5.67	
ام ا م	Ν	-1.35		-().57	
$\Delta e $	С	-0.60		-1.32		

Table S4 The oxidation states of Co/Ni atom of CoNi-NG catalysts. ΔG values of CoNi-NG catalysts at U= 0V.

		oxidation	oxidation	$\Delta G @ U= 0V$
		state	state	(eV)
		of Co (e)	of Ni (e)	
	*	0.93	0.87	
CoNi-N _{PA} G	OH*	1.16	0.86	0.25
	O*	1.21	0.87	0.55
	OOH*	1.11	0.87	0.71
	*	1.16	0.86	
CoNi-N _{PA} G	OH*	1.27	0.87	0.31
-OH	O*	1.32	0.88	0.85
	OOH*	1.27	0.89	0.62
	*	1.21	0.87	
CoNi-N _{PA} G	OH*	1.35	0.87	0.60
-0	O*	1.31	1.01	1.21
	OOH*	1.31	0.83	0.25
	*	0.67	0.56	
CoNi-N _P G	OH*	0.92	0.82	-0.30
	O*	1.01	0.91	-0.32
	OOH*	0.91	0.81	1.83
	*	0.92	0.82	
CoNi-N _P G	OH*	1.11	0.83	-0.03
-OH	O*	1.20	0.85	0.54
	OOH*	1.10	0.83	0.83
	*	1.01	0.91	
CoNi-N _P G	OH*	1.16	0.91	0.47
-0	O*	1.23	0.97	0.64
	OOH*	1.14	0.92	0.78

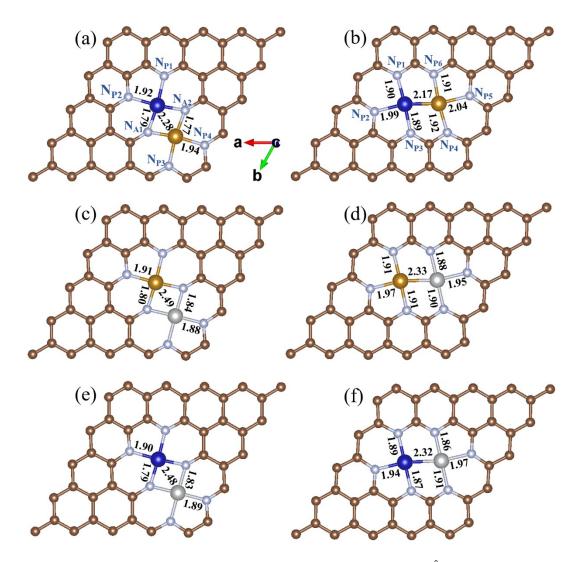


Fig. S1 The geometric structures and the mainly bonds lengths (Å) of (a) FeCo-N_{PA}G and (b) FeCo-N_PG; (c) FeNi-N_{PA}G and (d) FeNi-N_PG; (e) CoNi-N_{PA}G and (f) CoNi-N_PG. The golden, dark grey and blue balls represent Fe, Co and Ni atom, respectively.

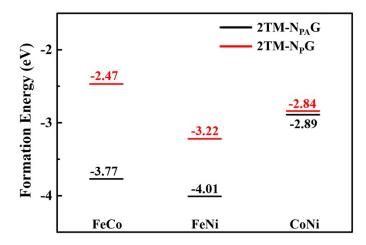


Fig. S2 The formation energy for 2TM-N_{PA}G and 2TM-N_PG.

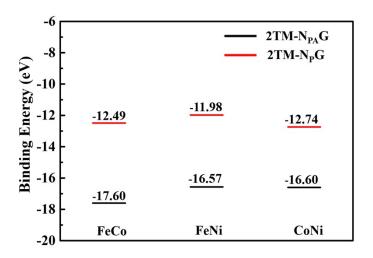
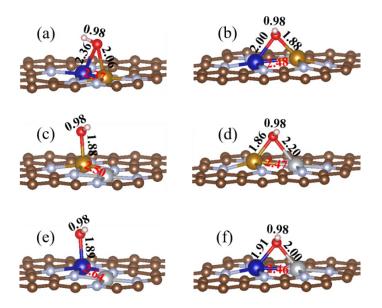



Fig. S3 The binding energy for 2TM-N_{PA}G and 2TM-N_PG.

Fig. S4 OH radical adsorption configurations for (a) $FeCo-N_{PA}G$, (b) $FeCo-N_PG$, (c) $FeNi-N_{PA}G$, (d) $FeNi-N_PG$, (e) $CoNi-N_{PA}G$ and (f) $CoNi-N_PG$. The golden, dark grey and blue balls represent Fe, Co and Ni atoms, respectively.

For FeCo-N_{PA}G and FeCo-N_PG (Fig. S4 (a, b)), after adsorption of OH radical, the lengths of Fe-Co are 2.37 Å and 2.48 Å, respectively, and the lengths increased corresponding to that before adsorption. In addition, Fe-O and Co-O bonds with lengths of 2.06 Å, 2.36 Å (FeCo-N_{PA}G) and 1.88 Å, 2.00 Å (FeCo-N_PG) are formed. For FeNi-N_PG and CoNi-N_PG (Fig. S4 (d, f)), the adsorption configurations of OH radical are very similar to that of FeCo-N_PG. After OH radical is adsorbed in FeNi-N_{PA}G (Fig. S4 (c)), the length of Fe-Ni is 2.50 Å. However, OH radical is only adsorbed on Fe site, and the calculated bond length between the Fe and O atoms is 1.88 Å, which is smaller than the length of Fe-O (2.06 Å) in FeCo-N_{PA}G. For CoNi-N_{PA}G (Fig. S4 (e)), the Co-O bond length is 1.89 Å, and note that the bond length of Co-Ni is 2.64 Å, which is the longest TM1-TM2 bond length among these structures.

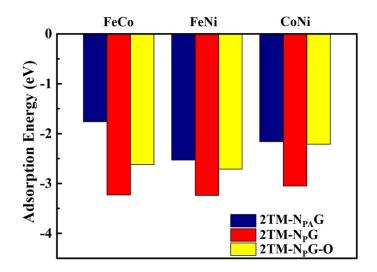


Fig. S5 OH radical adsorption energy for 2TM-N_{PA}G, 2TM-N_PG and 2TM-N_PG-O.

To better judge the relative stability of OH radical adsorption on the catalysts surface, the adsorption energy (E_{ads}) is calculated as Eq. s11 [S1]:

 $E_{ads} = E_{OH*} - E(2TM-NG) - E_{OH}$ (Eq. s11)

where E_{OH*} is the total energy of OH*, E(2TM-NG) and E_{OH} are the energies of 2TM-NG and OH radical (-7.14 eV). Negative adsorption energy indicates the exothermic process after OH radical adsorption on the substrate. The larger the negative value, the stronger the binding between OH radical and 2TM-NG [S21]. The E_{ads} of OH radical adsorbed on 2TM-N_PG (-3.23 eV for FeCo, -3.24 eV for FeNi, -3.05 eV for CoNi) are lower than that adsorbed on 2TM-N_{PA}G (-1.76 eV for FeCo, -2.53 eV for FeNi, -2.16 eV for CoNi) (Fig. S5), indicating that 2TM-N_PG has higher adsorption activity and stability for OH radical.

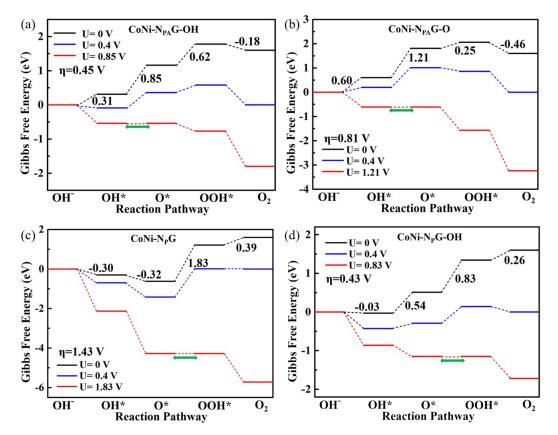


Fig. S6 At pH=14, the Gibbs free energy for the OER pathway for (a) $CoNi-N_{PA}G-OH$, (b) $CoNi-N_{PA}G-O$, (c) $CoNi-N_{P}G$ and (d) $CoNi-N_{P}G-OH$.

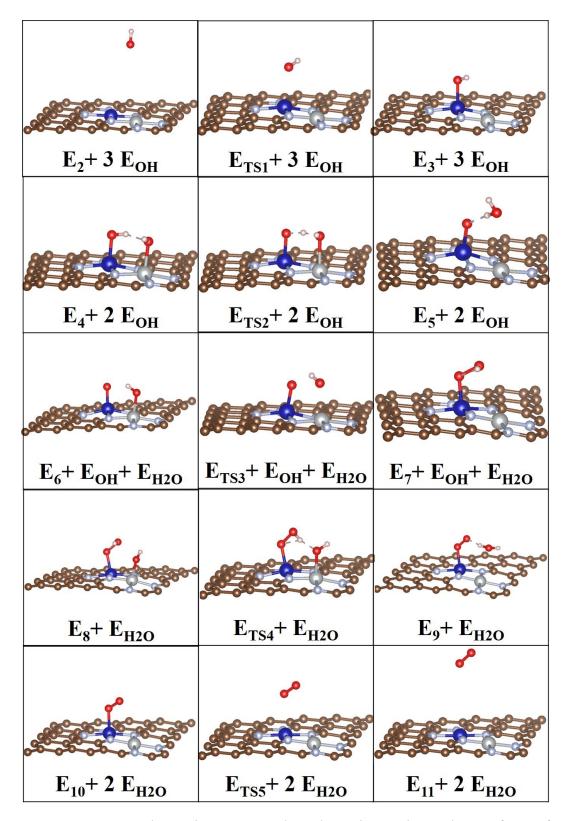


Fig. S7 Structures and energies corresponds to dynamic reaction pathway of OER for $CoNi-N_{PA}G$.

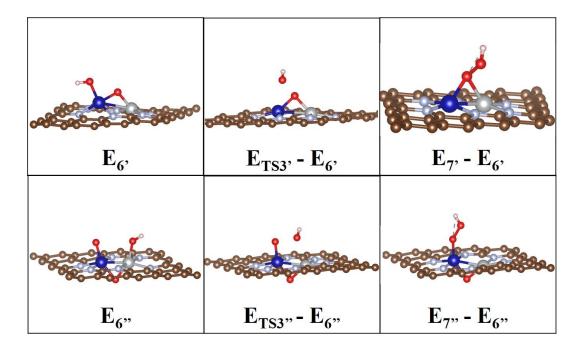


Fig. S8 Structures and energies corresponds to rate-determining step of OER for $CoNi-N_PG$ (top) and $CoNi-N_PG-O$ (bottom).

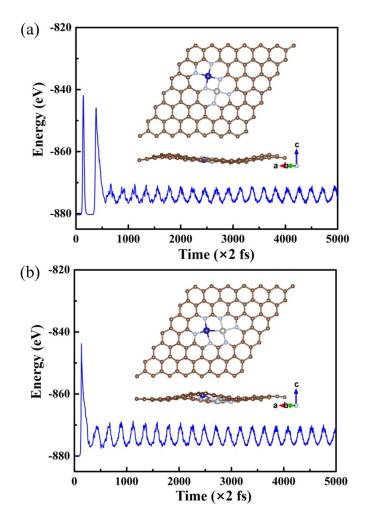


Fig. S9 Energy fluctuation of (a) CoNi- $N_{PA}G$, (b) CoNi- $N_{P}G$ during AIMD simulations at 500 K.

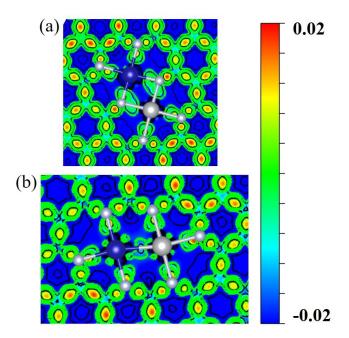
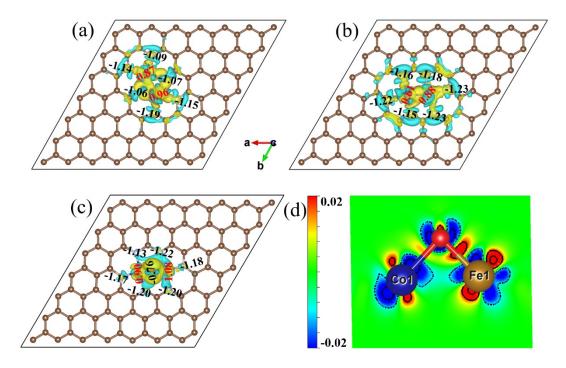
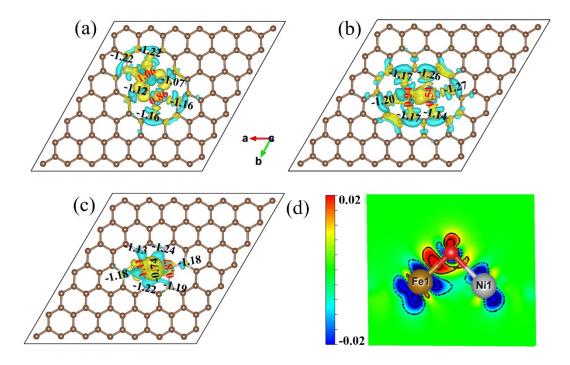




Fig. S10 The 2D charge density differences (differences between an interacting system and the superposition of atomic charge densities) for (a) CoNi-N_{PA}G and (b) CoNi-N_PG. (The 2D charge density differences, which helps to visualize the characteristics of bonding, is defined as the differences between the CoNi-NG systems and the superposition of atomic charge densities, i.e., $\Delta\rho(r) = \rho(\text{CoNi-NG})-\sum\rho(\text{atom})$.)

Fig. S11 The Bader charge analysis and the 3D charge density differences for (a) $FeCo-N_{PA}G$, (b) $FeCo-N_{P}G$, and (c) $FeCo-N_{P}G-O$. (d) The 2D plots clipping plane corresponding $FeCo-N_{P}G-O$ crosses the three atoms of Co, O and Fe. Yellow (solid contour line) and blue (dashed contour line) correspond to accumulation and depletion of total valence electrons, respectively. The isosurface value is 0.0035 e bohr⁻³.

Fig. S12 The Bader charge analysis and the 3D charge density differences for (a) FeNi-N_{PA}G, (b) FeNi-N_PG, and (c) FeNi-N_PG-O. (d) The 2D plots clipping plane corresponding FeNi-N_PG-O crosses the three atoms of Fe, O and Ni. Yellow (solid contour line) and blue (dashed contour line) correspond to accumulation and depletion of total valence electrons, respectively. The isosurface value is 0.0035 e bohr⁻³.

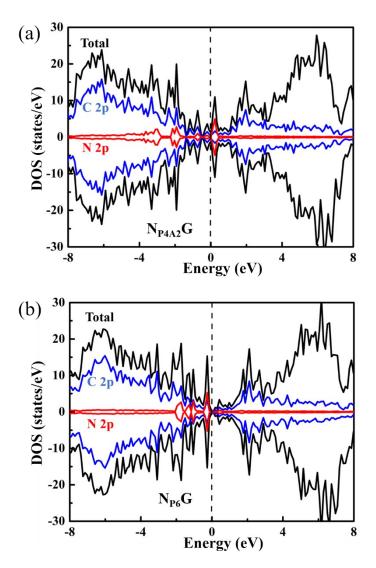


Fig. S13 Spin-polarized density of states for (a) $N_{PA}G$ and (b) $N_{P}G$.

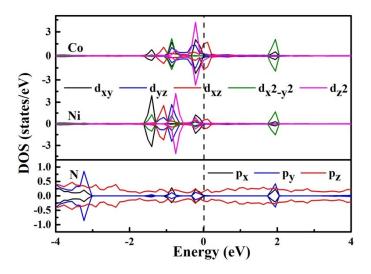


Fig. S14 Density of states of Co/Ni 3d and N 2p split orbitals for CoNi- N_PG .

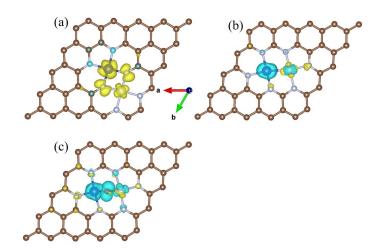


Fig. S15 Spin charge density of (a) CoNi- $N_{PA}G$, (b) CoNi- $N_{P}G$ and (c) CoNi- $N_{P}G$ -O.

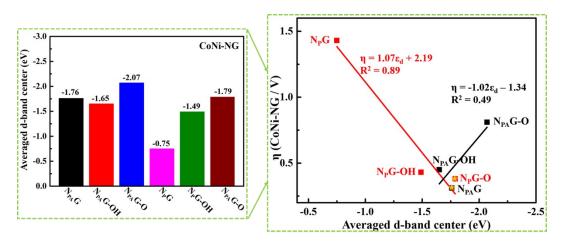


Fig. S16 Corresponding values and the correlation between over-potential (η) of CoNi-NG and the averaged d-band center (ϵ_d) for dual transition metal atoms (CoNi).

Fig. S17 Corresponding values and the correlation between over-potential (η) of CoNi-NG and d-band center (ϵ_d) of Ni atom.

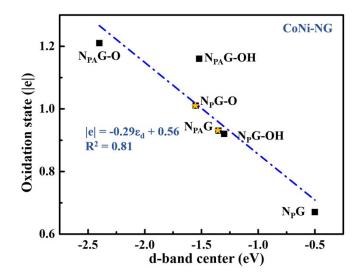


Fig. S18 Correlation between the oxidation state and d-band center (ϵ_d) of Co atom in CoNi-NG.

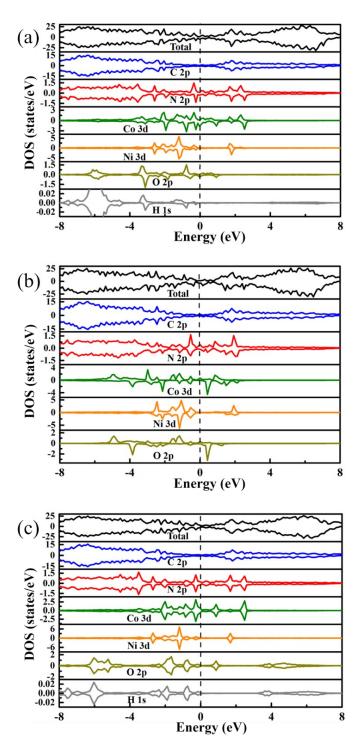


Fig. S19 Spin-polarized density of states for adsorption intermediates (a) OH*, (b) O^* , and (c) OOH* on CoNi-N_{PA}G.

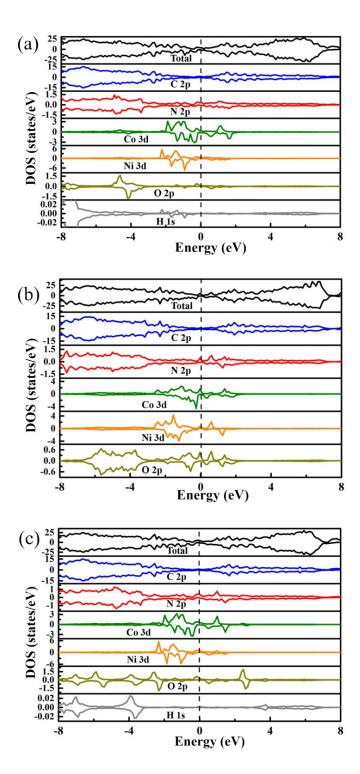


Fig. S20 Spin-polarized density of states for adsorption intermediates (a) OH*, (b) O*, and (c) OOH* on CoNi-N_PG.

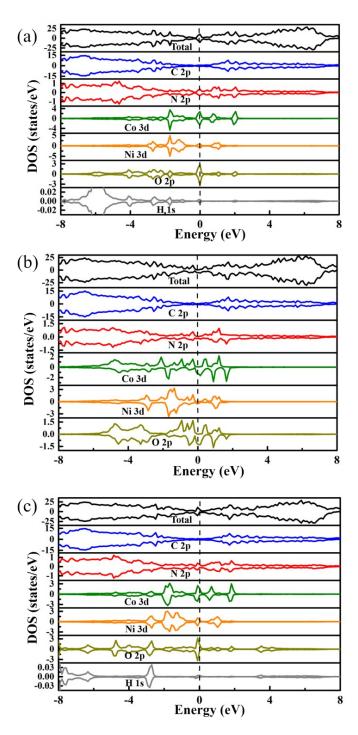


Fig. S21 Spin-polarized density of states for adsorption intermediates (a) OH*, (b) O^* , and (c) OOH* on CoNi-N_PG-O.

References

- [S1] L. L. Liu, C. P. Chen, L. S. Zhao, Y. Wang and X. C. Wang, *Carbon*, 2017, 115, 773-780.
- [S2] Y. S. Wei, L. Sun, M. Wang, J. Hong, L. Zou, H. Liu, Y. Wang, M. Zhang, Z.Liu and Y. Li, *Angew. Chem. Int. Edit.*, 2020, 132, 16147-16156.
- [S3] L. Ismer, M. S. Park, A. Janotti and C. G. Van de Walle, *Phys. Rev. B*, 2009, **80**, 184110.
- [S4] C. G. Van de Walle and J. Neugebauer, J. Appl. Phys., 2004, 95, 3851-3879.
- [S5] E. Finazzi and C. Di Valentin, J. Phys. Chem. C, 2007, 111, 9275-9282.
- [S6] S. Kattel, P. Atanassov and B. Kiefer, *Phys. Chem. Chem. Phys.*, 2014, 16, 13800-13806.
- [S7] X. Zheng, Y. Yao, W. Ye, P. Gao and Y. Liu, Chem. Eng. J., 2020, 413, 128027.
- [S8] P. Nematollahi and E. C. Neyts, Appl. Surf. Sci., 2019, 496, 143618.
- [S9] C. Yang, Z. D. Yang, H. Dong, N. Sun, Y. Lu, F. M. Zhang and G. Zhang, ACS Energy Lett., 2019, 4, 2251-2258.
- [S10] H. X. Xu, D. J. Cheng, D. P. Cao and X. C. Zeng, *Nature Catal.*, 2018, 1, 632-632.
- [S11] Q. Zhang, Y. Wang, Y. Wang, A. M. Al-Enizi, A. A. Elzatahry and G. Zheng, J. Mater. Chem. A, 2016, 4, 5713-5718.
- [S12] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. Waterhouse, L. Z.Wu, C. H. Tung and T. Zhang, *Adv. Energy Mater.*, 2016, 6, 1502585.
- [S13] Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo and S. Wang, ACS Appl. Mater.

Inter., 2016, 8, 18652-18657.

- [S14] B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen and Y. Tang, *Chem. Mater.*, 2016, 28, 6934-6941.
- [S15] Y. Wang, B. Zhang, W. Pan, H. Ma and J. Zhang, *ChemSusChem*, 2017, 10, 4170-4177.
- [S16] T. Gao, Z. Jin, Y. Zhang, G. Tan, H. Yuan and D. Xiao, *Electrochim. Acta*, 2017, 258, 51-60.
- [S17] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu and H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365.
- [S18] T. Liu, M. Li, X. Bo and M. Zhou, ACS Sustain. Chem. Eng., 2018, 6, 11457-11465.
- [S19] Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, ACS Nano, 2018, 12, 245-253.
- [S20] L. An, J. Feng, Y. Zhang, Y.-Q. Zhao, R. Si, G.-C. Wang, F. Cheng, P. Xi and S. Sun, *Nano Energy*, 2019, 57, 644-652.
- [S21] M. Lei, Y. Zhang, M. Wang, W. Yang and Z. Gao, *Chem. Eng. J.*, 2021, 421, 129747.