# **Supplementary Information**

## Design strategies of two-dimensional metal-organic frameworks

### toward efficient electrocatalysts for N2 reduction: Cooperativity of

#### transition metals and organic linkers

Ran Wang<sup>a</sup>, Chaozheng He<sup>a\*</sup>, Weixing Chen<sup>a\*</sup>, Ling Fu<sup>b</sup>, Chenxu Zhao<sup>a</sup>, Jinrong Huo<sup>c</sup>, Chenghua Sun<sup>d\*</sup>

<sup>a</sup> Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China

<sup>b</sup> College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China

<sup>c</sup> School of Sciences, Xi'an Technological University, Xi'an, Shaanxi 710021, China

<sup>d</sup> Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Faculty of Science Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia

<sup>\*</sup> Corresponding authors.

*E-mail addresses*: hecz2019@xatu.edu.cn (C. He); chenwx@xatu.edu.cn (W. Chen); chenghuasun@swin.edu.au (C. Sun)

| structure                                        | lattice /Å | $d_{M\text{-}X}/\text{\AA}$ | $d_{X\text{-}C}/\text{\AA}$ | Q <sub>M</sub> /e | d band center | $E_b(M) / eV$ |
|--------------------------------------------------|------------|-----------------------------|-----------------------------|-------------------|---------------|---------------|
| Cr <sub>3</sub> C <sub>12</sub> NH <sub>12</sub> | 13.84      | 1.97                        | 1.35                        | 1.31              | 0.305         | -7.86         |
| $Cr_{3}C_{12}O_{12}$                             | 13.44      | 1.94                        | 1.31                        | 1.43              | 0.587         | -7.53         |
| $Cr_{3}C_{12}S_{12}$                             | 15.07      | 2.26                        | 1.73                        | 1.11              | 0.364         | -7.20         |
| $Cr_3C_{12}Se_{12}$                              | 15.76      | 2.38                        | 1.91                        | 0.97              | 0.384         | -6.67         |
| $Mo_3C_{12}NH_{12}$                              | 14.22      | 2.05                        | 1.38                        | 1.42              | -0.690        | -8.45         |
| Mo <sub>3</sub> C <sub>12</sub> O <sub>12</sub>  | 13.92      | 1.98                        | 1.33                        | 1.66              | -0.779        | -8.15         |
| $Mo_{3}C_{12}S_{12}$                             | 15.46      | 2.35                        | 1.75                        | 1.17              | -0.257        | -8.27         |
| $Mo_3C_{12}Se_{12}$                              | 16.14      | 2.46                        | 1.93                        | 0.97              | -0.069        | -7.79         |
| $W_{3}C_{12}NH_{12}$                             | 14.10      | 2.03                        | 1.40                        | 1.63              | -1.381        | -10.31        |
| $W_{3}C_{12}O_{12}$                              | 13.64      | 1.93                        | 1.36                        | 1.82              | -1.629        | -9.97         |
| $W_{3}C_{12}S_{12}$                              | 15.43      | 2.33                        | 1.76                        | 1.30              | -0.380        | -10.07        |
| $W_3C_{12}Se_{12}$                               | 16.11      | 2.46                        | 1.94                        | 1.06              | -0.031        | -9.48         |

**Table S1.** Computed lattice constant, bond length (d), bader charge of the metal atom ( $Q_M$ , positive values indicate positive charge), d band center and binding energies of metal atom ( $E_b$ ) for  $M_3C_{12}X_{12}$ .

Table S2. The metal atom binding energies of the experimentally successfully synthesized  $M_3C_{12}X_{12}$ .

| structure                                                        | $E_b(M) / eV$ | structure                                                       | $E_b(M) / eV$ |
|------------------------------------------------------------------|---------------|-----------------------------------------------------------------|---------------|
| Co <sub>3</sub> C <sub>12</sub> NH <sub>12</sub> <sup>1, 2</sup> | -7.01         | Ni <sub>3</sub> C <sub>12</sub> O <sub>12</sub> <sup>1,3</sup>  | -7.48         |
| $Co_3C_{12}S_{12}^{1,4}$                                         | -6.61         | $Cu_3C_{12}NH_{12}^{1,2}$                                       | -6.65         |
| $Pd_3C_{12}S_{12}^{1,5}$                                         | -6.41         | $Cu_3C_{12}O_{12}^{1,3}$                                        | -7.21         |
| $Ni_{3}C_{12}NH_{12}^{1,2}$                                      | -6.89         | Pt <sub>3</sub> C <sub>12</sub> S <sub>12</sub> <sup>6, 7</sup> | -9.31         |

| Structure/eV         | G <sub>ad</sub> (N <sub>2</sub> -end) | Gad(N <sub>2</sub> H-end) | $G_{ad}(N_2\text{-side})$ | $G_{ad}(N_2H\text{-side})$ | $G_{ad}(NH_2)$ | G <sub>ad</sub> (NH <sub>3</sub> ) |
|----------------------|---------------------------------------|---------------------------|---------------------------|----------------------------|----------------|------------------------------------|
| $Cr_3C_{12}NH_{12}$  | 0.07                                  | -1.54                     | 0.35#                     |                            | -0.90          | -0.10                              |
| $Cr_{3}C_{12}O_{12}$ | 0.08                                  | -1.35                     | 0.26#                     |                            | -2.12          | -0.68                              |
| $Cr_{3}C_{12}S_{12}$ | -0.25                                 | -1.85                     | 0.36#                     |                            | -2.42          | -0.94                              |
| $Cr_3C_{12}Se_{12}$  | -0.20                                 | -1.77                     | 0.23#                     |                            | -2.42          | -0.88                              |
| $Mo_3C_{12}NH_{12}$  | -0.46                                 | -2.40                     | 0.15                      | -2.16                      | -2.96          | -0.37                              |
| $Mo_{3}C_{12}O_{12}$ | -0.21                                 | -2.15                     | 0.35                      | -1.79                      | -2.94          | -0.75                              |
| $Mo_{3}C_{12}S_{12}$ | -0.84                                 | -2.60                     | -0.30                     | -2.49                      | -3.53          | -1.62                              |
| $Mo_3C_{12}Se_{12}$  | -0.98                                 | -2.69                     | -0.41                     | -2.54                      | -3.62          | -1.81                              |
| $W_{3}C_{12}NH_{12}$ | -0.48                                 | -2.64                     | -0.23                     | -2.62                      | -3.60          | -0.32                              |
| $W_{3}C_{12}O_{12}$  | -0.28                                 | -2.58                     | 0.02                      | -2.49                      | -3.64          | -0.86                              |
| $W_{3}C_{12}S_{12}$  | -0.78                                 | -2.77                     | -0.19                     | -2.61                      | -3.90          | -1.62                              |
| $W_{3}C_{12}Se_{12}$ | -0.92                                 | -2.82                     | -0.28                     | -2.83                      | -3.97          | -1.80                              |

Table S3. The adsorption free energy of important reactive species in NRR on  $M_3C_{12}X_{12}$ .

# represents physical adsorption.

| Structure/eV                                    | $\Delta G(N_2-N_2H-end)$ | $\Delta G(N_2-N_2H-side)$ | $\Delta G(NH_2-NH_3)$ | $\Delta G(H)_M$ | $\Delta G(H)_X$ |
|-------------------------------------------------|--------------------------|---------------------------|-----------------------|-----------------|-----------------|
| $Cr_3C_{12}NH_{12}$                             | 0.95                     |                           | -1.39                 | 0.36            |                 |
| $Cr_3C_{12}O_{12}$                              | 1.14                     |                           | -0.74                 | 0.43            | 0.06            |
| $Cr_{3}C_{12}S_{12}$                            | 0.97                     |                           | -0.70                 | 0.34            | -0.02           |
| $Cr_3C_{12}Se_{12}$                             | 0.99                     |                           | -0.64                 | 0.28            | 0.14            |
| $Mo_3C_{12}NH_{12}$                             | 0.63                     | 0.26                      | 0.41                  | -0.47           |                 |
| Mo <sub>3</sub> C <sub>12</sub> O <sub>12</sub> | 0.62                     | 0.42                      | 0.02                  | -0.27           | 0.47            |
| $Mo_{3}C_{12}S_{12}$                            | 0.80                     | 0.38                      | -0.27                 | -0.68           | 0.16            |
| $Mo_3C_{12}Se_{12}$                             | 0.86                     | 0.44                      | -0.37                 | -0.66           | 0.10            |
| W <sub>3</sub> C <sub>12</sub> NH <sub>12</sub> | 0.41                     | 0.18                      | 1.10                  | -0.92           |                 |
| $W_{3}C_{12}O_{12}$                             | 0.26                     | 0.05                      | 0.60                  | -0.65           | 1.14            |
| $W_{3}C_{12}S_{12}$                             | 0.57                     | 0.15                      | 0.10                  | -0.95           | 0.31            |
| $W_3C_{12}Se_{12}$                              | 0.66                     | 0.01                      | -0.01                 | -1.00           | 0.34            |



Figure S1. Spin-polarized partial density of states of M-d orbitals and X-p orbitals for  $M_3C_{12}X_{12}$ . The Fermi level is set to zero.



Figure S2. Schematic diagram of Bader charge distribution before and after  $N_2$  adsorption on  $M_3C_{12}X_{12}$ .



Figure S3. Illustrations of electron localization functions for unit cell  $M_3C_{12}X_{12}$ .

#### References

1. B. Mortazavi, M. Shahrokhi, T. Hussain, X. Zhuang and T. Rabczuk, *Appl. Mater. Today*, 2019, **15**, 405-415.

2. N. Lahiri, N. Lotfizadeh, R. Tsuchikawa, V. V. Deshpande and J. Louie, *J. Am. Chem. Soc.*, 2017, **139**, 19-22.

3. Z. Wang, G. Wang, H. Qi, M. Wang, M. Wang, S. Park, H. Wang, M. Yu, U. Kaiser, A. Fery, S. Zhou, R. Dong and X. Feng, *Chem. Sci.*, 2020, **11**, 7665-7671.

4. A. J. Clough, J. W. Yoo, M. H. Mecklenburg and S. C. Marinescu, J. Am. Chem. Soc., 2015, 137, 118-121.

5. T. Pal, T. Kambe, T. Kusamoto, M. L. Foo, R. Matsuoka, R. Sakamoto and H. Nishihara, *ChemPlusChem*, 2015, **80**, 1255-1258.

P. Wang, X. Jiang, J. Hu, B. Wang, T. Zhou, H. Yuan and J. Zhao, *Phys. Chem. Chem. Phys.*, 2020, 22, 11045-11052.

7. T. Pal, S. Doi, H. Maeda, K. Wada, C. M. Tan, N. Fukui, R. Sakamoto, S. Tsuneyuki, S. Sasaki and H. Nishihara, *Chem. Sci.*, 2019, **10**, 5218-5225.