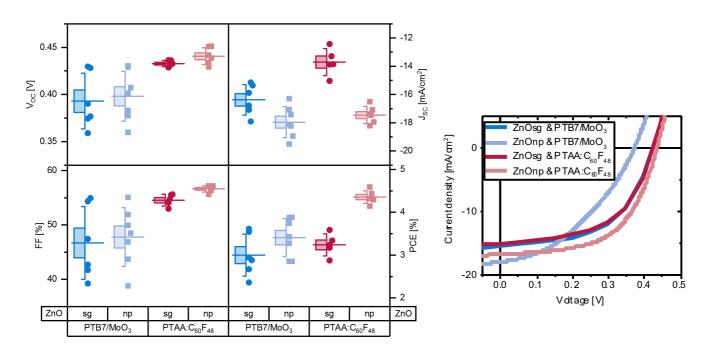
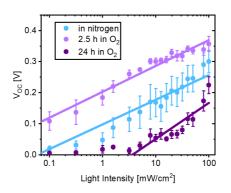
Electronic Supplementary Information for

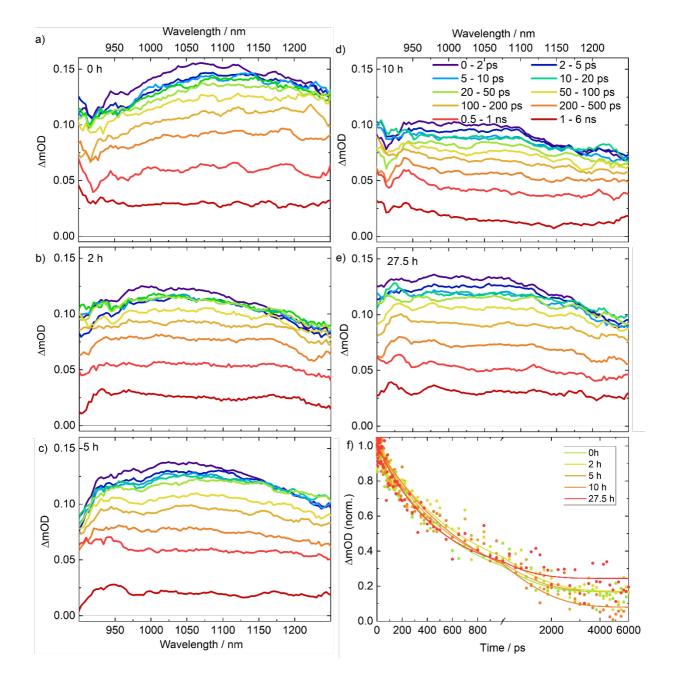
Oxygen-induced degradation in AgBiS₂ nanocrystal solar cells

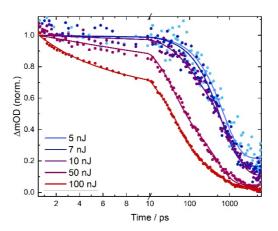

David Becker-Koch,^a Miguel Albaladejo-Siguan,^a Joshua Kress,^a Rhea Kumar,^b Yvonne J. Hofstetter,^a Qingzhi An,^a Artem A. Bakulin,^b Fabian Paulus^a and Yana Vaynzof *^a

DOI: 10.1039/x0xx00000x


^{a.} Integrated Center for Applied Physics and Photonic Materials and Center for Advancing Electronics Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany

- ^{b.} Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
- Fig. S1 Photovoltaic parameters after two days dark storage of devices with four different combination of extraction layers.
- Fig. S2 Light-intensity-dependent measurements of the V_{OC} of a ZnOsg & PTAA:C₆₀F₄₈ AgBiS₂ NC SC.
- Fig. S3 Transient absorption spectra for degrading AgBiS₂ films and their normalised kinetics.
- Fig. S4 Flux dependent transient absorption
- Fig. S5 Transient absorption spectra for pristine and degraded AgBiS2 NC devices with different combination of extraction layers.
- Table S1 Atomic percentages of pristine, 30 nm thick AgBiS₂-TMAI NC film on a glass/gold substrate, extracted from Fig. 2.
- Fig. S6 FTIR measurements on TMAI and OA capped AgBiS₂ NCs.
- Fig. S7 XRD measurements of pristine and 24h, 20% oxygen and light degraded, AgBiS₂-TMAI NC films.
- Fig. S8 Microscope images of the silver electrode of AgBiS₂ NC SCs.
- Fig. S9 Atomic force microscopy (AFM) micrographs of two different ZnO configurations.
- Fig. S10 Absorption measurements during oxygen degradation of AgBiS₂ NCs on ZnOsg and np.
- Fig. S11 XPS data for degraded AgBiS₂ NCs deposited on ZnOsg and np.
- Fig. S12 EDX measurement of a aggregates appearing on the AgBiS₂ NC films deposited on a ZnOnp layer.
- Fig. S13 XPS measurements of Ag electrodes of degraded AgBiS₂ NC solar cells.
- Fig. S14 Environmental gas stability for ZnOnp/AgBiS2/PTAA:C60F48 devices under continuous 1 sun irradiation.
- Fig. S15 J_{SC} evolution in dry air for different preconditions for ITO/ZnOsg/AgBiS₂-TMAI/PTAA:C₆₀F₄₈/Ag devices.


Journal Name


Fig. S1 left: Photovoltaic paramters after two days of dark storage, measured with 1 sun intensity for the four different comination of extraction layers and on the right: the *JV*-curves of the best performing devices for each case.

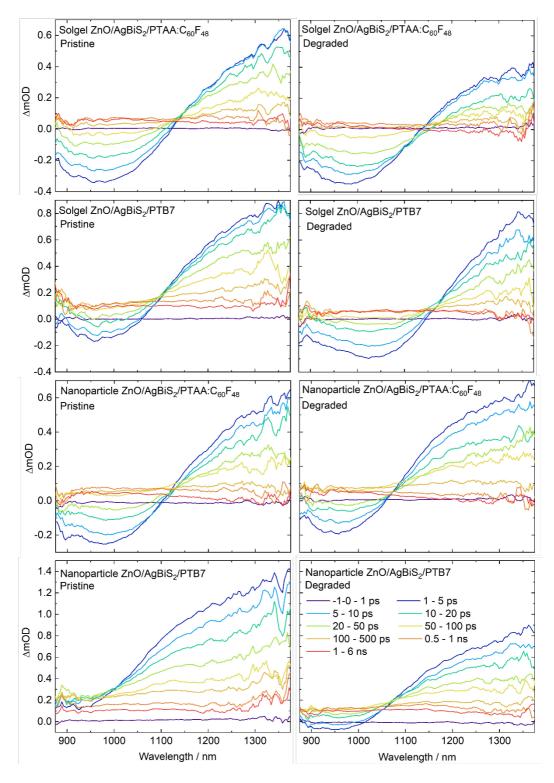

Fig. S2 Light-intensity-dependent measurements of the V_{OC} of a ZnOsg & PTAA:C₆₀F₄₈ AgBiS₂ NC SC. The first assessment is performed in nitrogen. Afterwards 20% oxygen are added to the gas flow and in the denoted time frames the second and third measurement are conducted.

Fig. S3 a-e) transient absorption spectra for neat AgBiS₂ films at increasing extents of degradation, following excitation with a 700 nm pump pulse. f) Normalised kinetics averaged across PIA region for each film with monoexponential fits shown as solid lines.

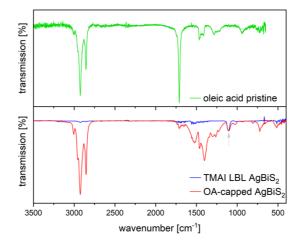
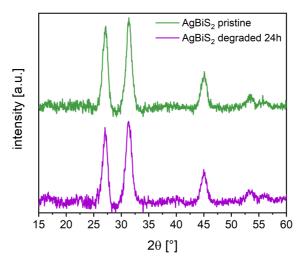
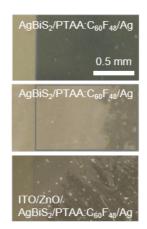

Fig. S4 Dependence of the normalised near-infrared (NIR) TA kinetics on pump intensity averaged across PIA region with a 700 nm pump wavelength. Solid lines are multiexponential fits.

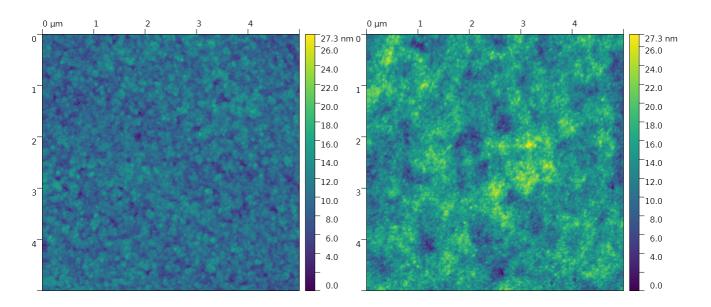
Fig. S5 TA spectra for AgBiS₂ devices (pumped at 700 nm) with different hole and electron transport layers, both pristine (left) and following 8 hours of degradation under light and O₂ (right).

Table S1 Atomic percentages of pristine and 24h, 20% oxygen and light degraded, 30 nm thick AgBiS₂-TMAI NC film on a glass/gold substrate, extracted from Fig. 2.

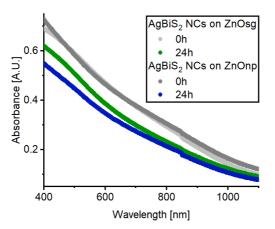
Orbital	Atomic	Atomic %
	%(pristine)	(degraded)
C 1s	39.2	43.9
Ag 3d	19.6	15.1
Bi 4f	8.9	7.8
S 2p	12.1	5.5
I 3d	7.4	4.7
O 1s	11.6	20.2
Au 4f	1.2	2.9

Fig. S6 FTIR measurements on TMAI and OA capped AgBiS₂ NCs. FTIR of OA is provided as reference.


Fig. S7 XRD measurements of pristine and 24h, 20% oxygen and light degraded, AgBiS₂-TMAI NC films.

6 | J. Name., 2012, 00, 1-3


ARTICLE

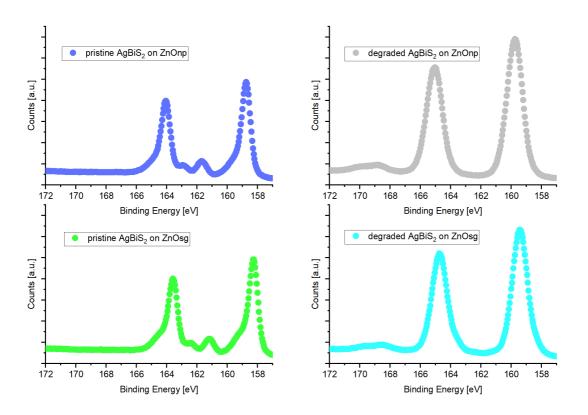

Fig. S8 Microscope images of the silver electrode (darker area) on AgBiS₂ NC films. Top: pristine state, the lighter part on the left is the uncovered AgBiS₂ NC film. Middle: degraded state after 24 h in oxygen and light, the original electrode extension is outlined. Bottom: degraded state of a full device after 24 h in oxygen and light.

Fig. S9 Atomic force microscopy (AFM) micrographs of two different ZnO configurations (left: sg, right: np) on glass/ITO.

Fig. S10 Absorption measurements during degradation of an $AgbiS_2$ film on top of an ZnOsg and np film. The degradation was performed in dry air and light. Compared to Fig. 5 the absorption loss is enhanced, especially on ZnOnp. The small step at 850nm is caused by a change of grating within the measurement setup.

Fig. S11 XPS data of the Bi 4f orbital as a measure of the compositional degradation of a layer of $AgbiS_2$ NCs on ITO/ZnOxx during degradation. Compared to Fig. 5 the degradation after 24 h in dry air and light appears more severe, manifesting in more oxidised species.

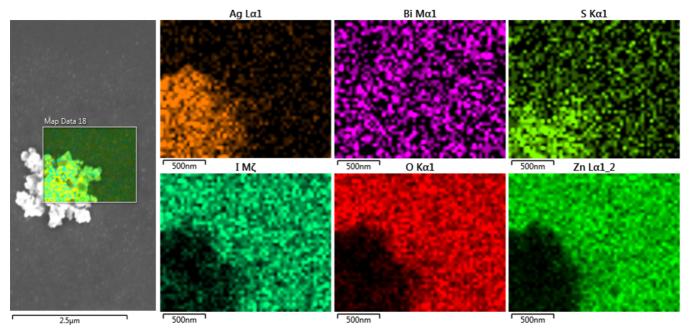


Fig. S12 EDX measurement of a aggregates appearing on the AgBiS₂ NC films deposited on a ZnOnp layer.

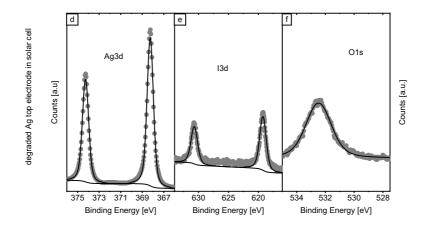
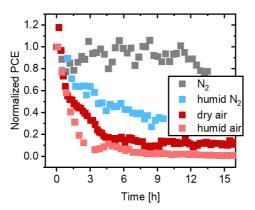
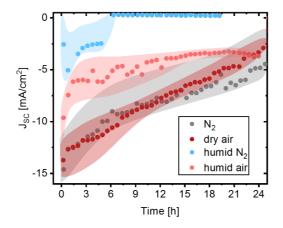




Fig. S13 XPS measurements of Ag electrodes of degraded AgBiS₂ NC solar cells.

Fig. S14 Environmental stability for $ZnOnp/AgBiS_2/PTAA:C_{60}F_{48}$ devices under continuous 1 sun irradiation in different atmospheres. The data was normalized to the first measurement value.

Fig. S15 J_{SC} evolution in dry air for different preconditions for ITO/ZnOsg/AgBiS₂-TMAI/PTAA:C₆₀F₄₈/Ag devices. Preconditioning was carried out for two days in the dark. The transparent shades denote the standard error of the averaged values.

- -