MOF-derived Electrochemical Catalyst Cu-N/C for the Enhancement

of the Amperometric Oxygen Detecting

Wenyan Yin^{a, c}, Milin Zhang^{a, b}, Jingyuan Liu^{a, c}, *, Khaled Tawfik Alali^{a, c}, Jing Yu^{a, c}, Jiahui Zhu ^{a, c}, Peili Liu^a, Rumin Li^a and Jun Wang^{a, c}

- a. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
- b. College of Science, Heihe University, Heihe 164300, P.R. China
- c. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

*Corresponding authors: Jingyuan Liu

E-mail addresses: liujingyuan1004@hrbeu.edu.cn (J. Liu).

Characterizations of ionic liquid [Bmmim][TFSI].

FTIR: In Fig. S1, the peak observed at 3152 cm⁻¹ was assigned to C–H stretching vibration of the imidazole ring, and the additional peaks at 2968 cm⁻¹ and 2880 cm⁻¹ corresponded to the saturated C–H bonds of the aliphatic chain. Besides, the peaks located at 1591 cm⁻¹ and 1541 cm⁻¹ were related to the stretching vibrations of C=C bond and C=N bond on the imidazole skeleton. Adsorptions peak at 1467 cm⁻¹ was attributed to the bending vibration of N–CH₃. Peaks at 1351 cm⁻¹, 1192 cm⁻¹ and 1058 cm⁻¹ derived from the S=O and SNS in the [TFSI], while the peaks around 1140 cm⁻¹ and 741 cm⁻¹ could be assigned to the vibrations of CF₃. Peaks at lower wavenumber region (790 cm⁻¹, 656 cm⁻¹) were indexed to the bending vibrations from C–H of imidazole ring.

¹**H** NMR: Fig. S2 gave the 1H NMR spectra of [Bmmim][TFSI], in which the characteristic chemical shifts (δ) were provided. The chemical shifts at 7.61, 7.58 were assigned to the hydrogen of carbon 1 and 2 from the imidazole ring. The chemical shifts at 4.06~4.10 were attributed to the hydrogen atoms of methylene on carbon 3. The hydrogen atoms of methyl on carbon 4 were corresponded to the chemical shift at 3.72, while the hydrogen atoms of carbon 5 corresponded to the chemical shift at 2.56. The chemical shift intervals of 1.70~1.63, 1.22~1.31, 0.87~0.90 were ascribed to methylene on carbon 6, 7 and methyl on carbon 8, respectively.

Fig. S2 ¹H NMR spectra of [Bmmim][TFSI].

Fig. S3 Secondary electron SEM images of Cu-N/C-700 (a, d), Cu-N/C-800 (b, e) and

Cu-N/C-900 (c, f).

Fig. S4 Pore size distribution of Cu-N/C-700, Cu-N/C-800 and Cu-N/C-900.

Fig. S5 Bright field TEM images of an individual particle of Cu-ZIF-8 and Cu-N/C-900.

Tab. S1 The percentage (%) for each element of Cu-ZIF-8, Cu-N/C-700, Cu-N/C-800

Elements	Cu-N/C-900	Cu-N/C-800	Cu-N/C-700	Cu-ZIF-8
Zn	-	3	4.19	11.73
Cu	0.8	0.57	0.6	0.56
Ν	6.41	14.86	20.92	16.82
0	12.13	10.94	9.29	16.16
С	80.66	70.63	65	54.72

and Cu-N/C-900 from XPS.

Tab. S2 Zn content (wt%) in different samples from ICP analysis

Sample	Zn content (wt%)
Cu-N/C-700	8.29
Cu-N/C-800	4.66
Cu-N/C-900	0.10

Tab. S3 Comparison of the sensing performance of the as-assembled sensor unit and

Sensors (IL adopted)	Target sensing gas	Concentration range (v/v%)	Sensitivity	LOD	reference
Porous polyethylene membrane (EMIBF ₄)	O ₂	0~100 % (v/v%)	0.0067 µA/O ₂ %	unprovided	1
Planar permeable membrane [C ₄ mpy][NTf ₂]	O ₂	0~21 % (v/v%)	0.48 μA/%	0.08 vol %	2
Microdisc electrode [P _{6,6,6,14}][FAP]	O ₂	0.77~1.00 bar	9.8 nA/bar ⁻¹	unprovided	3
[BMIM][NTf ₂]	O ₂	200~10 ⁶ ppm v/v	660 μ A ppm ⁻¹ v/v	140 ppm v/v	4
IL-NiCo ₂ O ₄ /rGO composite electrolyte [BMIM][PF ₆]	O ₂	0~100 % (v/v%)	0.1087 μA/O ₂ % (v/v)	unprovided	5
Double-layer ionic liquid film [BMIM][BF ₄]	O ₂	0~100 % (v/v%)	0.077 μA/O ₂ %	unprovided	6
This work	O ₂	0~100 % (v/v%)	0.1678 μA/O ₂ %	0.42 vol %	This work

O₂ sensor reported in literatures.

1. R. Wang, T. Okajima, F. Kitamura and T. Ohsaka, *Electroanalysis*, 2004, 16, 66-72.

2. X. Y. Mu, Z. Wang, X. Q. Zeng and A. J. Mason, IEEE Sens. J., 2013, 13, 3976-3981.

3. P. L. Li and R. G. Compton, *Electroanalysis*, 2015, 27, 1550-1555.

 R. Toniolo, N. Dossi, A. Pizzariello, A. P. Doherty, S. Susmel and G. Bontempelli, J. Electroanal. Chem., 2012, 670, 23-29.

5. L. Yu, J. Liu, W. Yin, J. Yu, R. Chen, D. Song, Q. Liu, R. Li and J. Wang, Talanta, 2020, 209.

6. H. Zhang, J. Liu, Q. Liu, R. Chen, H. Zhang, J. Yu, D. Song, X. Jing, M. Zhang and J. Wang, J. *Electrochem. Soc.*, 2018, 165, B779-B786.

Tab. S4 The fitted EIS parameters from the equivalent circuits for the pure ionic

Electrolyte	$R_{ct}(\Omega)$	W (Ω)
[Bmmim][TFSI]	485.0	1.45*105
[Bmmim][TFSI]-2 % Cu-N/C	427.6	1.32*10-8
[Bmmim][TFSI]-4 % Cu-N/C	420.3	8.30*10 ⁻¹⁷
[Bmmim][TFSI]-6 % Cu-N/C	404.7	3.02*10-8
[Bmmim][TFSI]-8 % Cu-N/C	778.1	1.45*10 ⁵

liquid, and composites electrolytes (with different Cu-N/C content).