Supporting Information

Preparation and Characterization of $Li_{1.12}K_{0.05}Mn_{0.57}Ni_{0.24}Nb_{0.02}O_2$ Cathode Material with Highly Improved Rate Cyclic Performance for Lithium Ion Batteries

Cong Liu,¹ Shuang Zhang,¹ Yuanyuan Feng,¹ Xiaowei Miao,¹ Gang Yang^{*,1} Jie Li^{*,2}

^{1.} Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, P.R. China

^{2.} Department of Energy, Politecnico di Milano, Campus Bovisa - Via Lambruschini
 4a, Milan, 20156, Italy

* Corresponding authors

E-mail: gyang@cslg.edu.cn

jie1.li@polimi.it

sample		LN	MN	LMN-K/Nb	
		LMO	LMNO	LMO	LMNO
Lattice parameters	а	4.9641	2.8606	4.9558	2.8725
(Å)	b	8.5631		8.5827	
	С	5.0241	14.2608	5.0337	14.2754
I_{003}/I_{104}		2.283		1.656	
Reliability and	R_{wp} (%)	9.6		5.4	
weighted factors	$R_{\rm p}$ (%)	6.8 2.1		5.2	
	χ^2			1.8	

Table 1 Refined lattice parameters of LMN and LMN-K/Nb.

Table S2 The fitting parameters for the Nyquist plots.

	3 rd cycle discharge to 3.5 V			50 th cycle discharge to 3.5 V		
	$R_{ m e}/\Omega$	$R_{ m sf}\!/\Omega$	$R_{ m ct}/\Omega$	$R_{ m e}/\Omega$	$R_{ m sf}\!/\Omega$	$R_{ m ct}/\Omega$
LMN	1.83	45.52	505.71	2.18	180.53	1325.32
LMN-K/Nb	1.47	13.58	90.63	2.02	50.36	266.16

Materials	Initial coulomb efficiency	Capacity-current density	Cycling performance (cycles)	Ref.
$\begin{array}{l} Li_{1.12}K_{0.05}Mn_{0.57}Ni_{0.24}Nb_{0.}\\ _{02}O_{2}\end{array}$	77.2%	244 mAh g ⁻¹ at 0.1 C 161 mAh g ⁻¹ at 2 C 145 mAh g ⁻¹ at 5 C	96% at 0.1 C (100) 88% at 2 C (200)	This work
$Li_{1.117}K_{0.05}Mn_{0.583}Ni_{0.25}O_2$	71.7%	229 mAh g ⁻¹ at 0.1 C 145 mAh g ⁻¹ at 2 C 100 mAh g ⁻¹ at 5 C	98% at 0.1 C (100) 95% at 2 C (200)	[1]
$\begin{array}{l} Li_{1.2}Ni_{0.133}Co_{0.133}Mn_{0.534}\\ O_{1.8}F_{0.2}\end{array}$	74%	212 mAh g ⁻¹ at 0.1 C 150 mAh g ⁻¹ at 0.2 C 50 mAh g ⁻¹ at 1 C	80% at 0.1 C (100)	[2]
$Li_{1.17}Ni_{0.25}Mn_{0.58}Mg_{0.02}O_2$	78.1%	228 mAh g ⁻¹ at 0.2 C 137 mAh g ⁻¹ at 2 C 104 mAh g ⁻¹ at 5 C	95% at 0.2 C (100)	[3]
$\begin{array}{l} Li_{1.2}Ni_{0.18}Co_{0.18}Mn_{0.18}\\ Ti_{0.26}O_2 \end{array}$	60%	175 mAh g ⁻¹ at 0.1 C 105 mAh g ⁻¹ at 1 C 82 mAh g ⁻¹ at 2 C	97% at 0.1 C (182)	[4]
$Li_{3}PO_{4}$ -coated $Li_{1,2}Mn_{0,54}Ni_{0,13}Co_{0,13}O_{2}$	75.78%	226 mAh g ⁻¹ at 0.1 C	78% at 1 C (100)	[5]
$Li_{3}PO_{4}\text{-coated}$ $Li_{1.2}Mn_{0.6}Ni_{0.2}O_{2}$	77%	240 mAh g ⁻¹ at 0.1 C 159 mAh g ⁻¹ at 1 C	88% at 0.1 C (50) 84% at 1 C (50)	[6]
LiAlO ₂ -coated Li _{1.2} Ni _{0.2} Mn _{0.56} O ₂	74.9%	237 mAh g ⁻¹ at 0.06 C 213 mAh g ⁻¹ at 0.2 C 112 mAh g ⁻¹ at 5 C	91% at 0.2 C (100)	[7]
Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ (Sol-freeze-drying method)	61%	242 mAh g ⁻¹ at 0.2 C 148 mAh g ⁻¹ at 2 C 84 mAh g ⁻¹ at 5 C	96% at 0.2 C (100)	[8]
Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ (Electrolyte additive)	70.2%	238 mAh g ⁻¹ at 0.1 C 170.0 mAh g ⁻¹ at 1 C 100 mAh g ⁻¹ at 5C	80% at 2 C (200)	[9]
Li _{1.2} Mn _{0.55} Ni _{0.15} Co _{0.1} O ₂ (Electrolyte additive)	70.03%	248mAh g ⁻¹ at 0.1 C	61% at 0.1 C (200)	[10]

 Table S3 Comparison of electrochemical performance of Li-rich oxides.

Fig. S1 Rietveld refinement of the XRD patterns for LMN (a) and LMN-K/Nb (b).

Fig. S2 The equivalent circuit model for Nyquist plots.

Fig. S3 The rate performance of the LMN and LMN-K/Nb in full cell at 0.1 C, 0.2 C, 0.4 C, 0.5 C, 0.8 C and 1 C.

References

- [1] C. Liu, M. Wu, Z. Guo, X. Luo, H. Ji, G. Yang, W. Hou, *Electrochim. Acta* 2020, 341, 136014.
- [2] S. Liu, Z. Wang, Y. Huang, Z. Ni, J. Bai, S. Kang, Y. Wang, X. Li, *J. Alloy. Compd.*2018, 731, 636-645.
- [3] T.F. Yi, Y.M. Li, S.Y. Yang, Y.R. Zhu, Y. Xie, ACS Appl. Mater. Inter. 2016, 8, 32349-32359.
- [4] S. Liu, Z. Liu, X. Shen, X. Wang, S.C. Liao, R. Yu, Z. Wang, Z. Hu, C.T. Chen, X.
- Yu, X. Yang, L. Chen, Adv. Energy Mater. 2019, 9, 1901530.
- [5] D. Chen, F. Zheng, L. Li, M. Chen, X. Zhong, W. Li, L. Lu, *J. Power Sources* 2017,
 341, 147-155.
- [6] Y. Lee, J. Lee, K.Y. Lee, J. Mun, J.K. Lee, W. Choi, *J. Power Sources* 2016, 315, 284-293.
- [7] L.L. Zhang, J.J. Chen, S. Cheng, H.F. Xiang, Ceram. Int. 2016, 42, 1870-1878.
- [8] P. Yang, H. Li, X. Wei, S. Zhang, Y. Xing, *Electrochim. Acta* 2018, 271, 276-283.
- [9] Y. Zhuang, F. Du, L. Zhu, H. Cao, H. Dai, J. Adkins, Q. Zhou, J. Zheng, *Electrochim. Acta* 2018, 290, 220-227.
- [10] J. Lan, Q. Zheng, H. Zhou, J. Li, L. Xing, K. Xu, W. Fan, L. Yu, W. Li, ACS Appl.Mater. Inter. 2019, 11, 28841-28850.