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23
24 Fig. S1 (a) Formation of RP fault as a result of atomic steps on the surface of the LaSrAlO4 substrate. Due to the rock-salt type 
25 structure of LaSrAlO4, the atomic step is displaced with regard to the underlying layer by  (in pseudocubic axes). 𝑎/2[111]
26 Subsequent deposition leads to an RP fault on the (010) plane. (b) Formation of RP fault due to nonstoichiometry. During the growth, 
27 the excessive A-site cations must be accommodated by the formation of an AO island on the fully coalesced AO layer. To minimize 
28 the electrostatic repulsion between the neighboring A-site cations,  the AO island is displaced by  with respect to the 𝑎/2[111]
29 underlying crystal, i.e., rock-salt type. The subsequent epitaxial growth results in an antiphase domain encompassed in RP faults on 
30 {100} planes.
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37 Fig. S2 (a) Atomic model of PrNiO3 viewed in  direction. The crystal can be described by a pseudocubic symmetry with the [100]

38 lattice parameter of = 3.82 Å (b) Atomic model of PrAlO3 viewed in  direction with   = 3.76 Å. (c) 𝑎𝑃𝑁𝑂,𝑝𝑠𝑒𝑢𝑑𝑜 [100] 𝑎𝑃𝐴𝑂,𝑝𝑠𝑒𝑢𝑑𝑜

39 Atomic structure of the LaSrAlO4 substrate. LaSrAlO4 possesses tetragonal symmetry with a = b = 3.75 Å and c = 12.65Å. 
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41
42 Fig. S3 (a) AC-HRTEM image acquired at the substrate-superlattice interface in [100] projection. Negative Cs imaging conditions 
43 have been applied with the spherical aberration coefficient Cs tuned to 15 µm and an overfocus of c.a. 5 nm, resulting in bright- – 
44 atom contrast. The number on the left denotes the numbering of unit cells along the growth direction [001]. (b) Measured out-of-
45 plane lattice parameter  and in-plane lattice parameter  as a function of the number of unit cells along the growth direction. 𝑑001 𝑑010

46 Each data point is averaged over 40 unit cells along the in-plane direction, and the error bar corresponds to the standard error. (c) 
47 AC-HRTEM image acquired at the superlattice surface. (b) Measured out-of-plane lattice parameter  and in-plane lattice 𝑑001

48 parameter  as a function of the number of unit cells along the growth direction.  oscillates with a periodicity of 8 unit cells, 𝑑010 𝑑001

49 agreeing well with the [4 u.c.//4 u.c.] PrNiO3/PrAlO3 bilayer structure. 
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51
52 Fig. S4 (a) AC-HRTEM image acquired at the RP fault in [100] projection. Negative Cs imaging conditions has been applied with 
53 the spherical aberration coefficient Cs tuned to 15 µm and an overfocus of c.a. 5 nm, resulting in bright-atom contrast. The red  – 

54 arrows denote the RP fault plane. (b) In-plane strain map showing a local expansion of the in-plane lattice parameter . (c) 𝜀𝑥𝑥 𝑑020

55 AC-HRTEM image acquired at the same position as in (a). An underfocus of c.a. - 1 nm has been applied, resulting in dark-atom 
56 contrast. (d) Comparison between the experimental and simulated image, showing clear contrast distinction between Pr and Ni/Al 
57 cations. 
58
59

60
61 Fig. S5 (a) AC-HRTEM image acquired at the RP fault in [001] projection (i.e., plan view). The red arrows indicate the RP fault 
62 plane. (b) In-plane strain map showing a local expansion of the in-plane lattice parameter .  𝜀𝑥𝑥 𝑑020
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65
66 Fig. S6 (a) AC-HRTEM image acquired at the origin of the RP faults observed in Fig. 3 and S4. Negative Cs imaging conditions 
67 has been applied with the spherical aberration coefficient Cs tuned to 15 µm and an overfocus of c.a. 5 nm, resulting in bright-atom  – 

68 contrast. (b) In-plane strain map showing a local expansion of the in-plane lattice parameter  and two dislocation cores. (c) 𝜀𝑥𝑥 𝑑020

69 AC-HRTEM image acquired at the same position as in (a). An underfocus of c.a. - 1 nm has been applied, resulting in dark-atom 
70 contrast. 
71
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73
74 Fig. S7  AC-HRTEM images acquired with dark-atom contrast showing RP faults (indicated by the red arrows) separated by only 1 
75 unit cell. No further broadening was observed till the superlattice surface. 
76


