Supporting Information

Hybridly Double Crosslinked Carbon Nanotube Networks with Combined Strength and Toughness via Cooperative Energy Dissipation

Jingui Yu^{a,†}, Chenxi Zhai^{b,†}, Mingchao Wang^{c,†}, Zhuangli Cai^d, Jingjie Yeo^b, Qiaoxin Zhang^a, Changying Zhao^{d,*}, Shangchao Lin^{d,*}

^a School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China.

^b Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.

^c Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.

^d Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. *Corresponding author contact information:

Shangchao Lin, <u>shangchaolin@sjtu.edu.cn</u>; Changying Zhao, <u>changying.zhao@sjtu.edu.cn</u> [†]These authors contribute equally to this work.

Figure S1. The correlation between tensile stresses σ_{xx} and bonding potential energy E_{bond} under different crosslinking densities and compositions.

Figure S2. The local von Mises stress map of the CNT network with a crosslinking density of 3.6×10^{-4} and 75% S crosslinks at strains of (a) 1.45 and (b) 2.2.

Figure S3. The stress-strain curve for the CNT network without crosslinks.