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Section S1. Details of Ellipsometry Modeling 

Section S1.1 Note on Simultaneous Fitting of Multimode Ellipsometry  
 

The three datasets (transmittance (T), reflection ellipsometry (rSE) and transmission ellipsometry 

(tSE)) are fit simultaneously and self-consistently to maximize sensitivity to the in-plane and out-of-plane 

optical constants for the film. Specifically, we are fitting datasets that obey different functional relationships 

on the same set of parameters. i.e. 

 𝑟𝑆𝐸 = 𝑓(𝒉𝛎, 𝛉, 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … ) (S1) 

 𝑡𝑆𝐸 = 𝑔(𝒉𝛎, 𝛉, 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … ) (S2) 

 𝑇 = ℎ(𝒉𝛎, 𝛉, 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … ) (S3) 

 

Using CompleteEASE, we sum the residuals of all three data sets to minimize the errors across all data sets 

simultaneously for a single set of {𝒑𝒊}. In practice, rSE is very sensitive to thickness and surface quality, 

and T is helpful in reducing correlations between thickness and k of the ordinary axis (but taken at 𝛉 = 𝟎,  

is insensitive to the extraordinary absorption). By adding tSE, we see a further reduction in correlations 

between ordinary and extraordinary absorptions [1]. Further, we analyze multiple samples of both thin film 

and cleaved crystals. Again, we use self-consistency between multiple samples of different thickness to 

ensure representative results and reduce potential correlations between thickness and optical constants. 
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Section S1.2 General Oscillator Model 
 

The full oscillator model used for the thin film are presented in Figure S1. Here, we note that all 

oscillators are modeled as Gaussians, except for a broad peak just above the excitons that we fit with a 

PSemiM0. We include a calculation of ε1 with the excitonic contribution to ε2 removed to highlight the 

importance of the exciton to the background index in the transparent region. 

 

Figure S1 General oscillator uniaxial model. (a) ordinary axis. (b) extraordinary axis. 
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Section S1.3 Note on Excitonic model 
 

The exciton was modeled with Gaussian oscillators in the range of 2.38-2.5eV below a PSemiM0 

direct band gap model with turn on around 2.48-2.6 eV. The ordinary axis of the thin film is modeled 

with 2 Gaussians. The cleaved crystal exciton appears sharper and is modeled with 3 Gaussians.  When 

modeled as anisotropic, only one Gaussian is ever used for the out of plane component. 

 
Figure S2. Modeled excitonic absorption, 𝜖2. a: a direct comparison of the total absorption around the band gap. The 

strong anisotropy between IP and OP is manifest. Also, we see a sharper exciton from the cleaved crystal, as well as 

a sharper absorption turn-on close to 2.6 eV. While this shape is anthropogenic—enforced by the choice of oscillator 

functions—we do resolve a clear change in the shape of the absorption relative to the thin film. b-c: the model is 

expressed in terms of the constituent Gaussian oscillators for the three models. 
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Section S1.4 Confidence intervals on modeled optical constants 
 

We estimate the uncertainty on the model by accounting for systematic errors. This is done in 

CompleteEASE using the Fit Error Magnitude function, and this is distinct from the much smaller 90% 

confidence intervals derived for random errors. The systematic error is used to calculate a confidence range 

on the model, i.e. a range of acceptable models that fit the data.  These confidence ranges are plotted in Fig. 

S3. It is immediately obvious that confidence on ordinary axis ε is generally much better than that on the 

extraordinary axis. Also, we see that the absolute confidence in the isotropic model is worse than the 

corresponding uniaxial model, a natural consequence of the relative goodness of the fit. Lastly, we note that 

the crystal model (frames c and f) underestimates the confidence interval on the extraordinary axis because 

we fit the critical point parameters in that analysis to those derived for the thin film.  

 

Figure S3. Modeled dielectric functions, with fit parameter uncertainties propagated to dielectric models. (a) and (d) 

the inaccurate isotropic model shows a large uncertainty in the extracted dielectric function due to the inadequacy of 

the model. (b) and (e) the uniaxial model greatly improves precision in the ordinary axis, but we see the extraordinary 

component is less certain. For the cleaved crystal, (c) and (f), we fix the critical points of the extraordinary, so no 

confidence is computed for that parameter. The very large uncertainty in the UV can be attributed to the high roughness 

of the sample. On the other hand, the birefringence is more precisely determined due back reflections in the thick, 

high-quality crystal. 
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Section S2. Details of DFT Calculations 
 
Table S1. Comparison of the DFT-PBE [2] plus Tkatchenko-Scheffler (TS) van-der-Waals correction [3] lattice 

parameters of PEPI to experimentally measured values. In the computations, the crystallographic a axis corresponds 

to the long axis perpendicular to the inorganic layer. In the second row of the table, the axes labels are swapped to 

match the convention used for the experimental values. The c-lattice vector is either given for unit cells with two or 

one inorganic layer. In the comparison to the unit cells containing only one inorganic layer, we double the unit cell 

parameter c, because the unit cell used in the present computations contains two inorganic layers. The computed lattice 

parameters deviate from the low-temperature measurements by less than 1%. Deviation from higher temperature 

measurements is larger (up to 3 %) and is expected, since DFT-PBE+TS does not include temperature effects; we also 

note that there is some discrepancy between different experiments. Likewise, there appears to be some discrepancy 

regarding unit cell angles between different reports. While the same angle can be reported as either >90° or <90° (e.g., 

in different reports of the 𝛼 angle), some larger deviations appear between different reported experimental values of 

the 𝛽 angle. Our computational results match the experimentally reported results in Refs.  [4,5].   

Ref. a b c α β γ 

DFT-PBE+TS 

(choice of axis 

labels in 

computation) 

32.36 Å 8.66 Å 8.70 Å 89° 86° 85° 

DFT-PBE+TS 

(axes swapped 

to allow 

comparison to 

literature) 

8.70 Å 8.66 Å 32.36 Å 85° 86° 89° 

Ref. [6] 100K 8.679(2)  Å 8.684(2) Å 16.410(4) Å 94.453(14)° 100.588(13)° 90.573(11)° 

Dev. (%) 0.24 0.28 1.42 0.64 7.66 1.77 

Ref.   [4] 100 K 8.6863(2) Å 8.6856(2) Å 32.3872(8) Å 85.2360(10)° 85.2760(10)° 89.4460(2)° 

Dev. (%) 0.16 0.30 0.08 0.28 0.85 0.50 

Ref.  [4] 300 K 8.7437(2) Å 8.7437(2) Å 33.0253(6) Å 84.6160(9)° 84.6307(9)° 89.6320(9)° 

Dev. (%) 0.50 0.97 2.06 0.45 1.59 0.71 

Ref.  [5] 296 K 8.7389(2) Å 8.7403(2) Å 32.9952(6) Å 84.646(1)° 85.657(1)° 89.643(1)° 

Dev. (%) 0.45 0.93 1.96 0.42 0.40 0.72 

Ref.  [7]  8.734 Å 8.747 Å 16.682 Å 95.19° 99.79° 90.34° 

Dev. (%) 0.39 1.00 3.10 0.22 6.73 1.51 

 

Section S2.1 Note on Underestimation of the computed band gap by HSE06 + SOC 
 

The underestimation of the computed band gap (2.01 eV), relative to the range of experimental 

estimates of the fundamental gap (~2.5-2.8 eV  [8–14]), is an expected systematic error of the HSE06+SOC 

method. It combines (i) an underestimation of SOC by the second-variational approach, which we have 

quantified previously  [15,16], and (ii) the known uncertainty of hybrid density functionals when used to 

estimate the fundamental gaps of semiconductors. One approach that is sometimes applied for 

homogeneous (i.e., non-hybrid) materials is to optimize the exchange mixing parameter in the hybrid 

functional to simply match the experimentally observed fundamental gap. In the present case, this strategy 

is not directly applicable since the exact fundamental gap of PEPI is not known (the position of the exciton 

is well established, but different estimates exist for the exciton binding energy and fundamental gap, which 

are harder to measure). More importantly, adjusting the hybrid functional by a single, spatially 
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homogeneous parametrization cannot account for the presence of separate organic and inorganic 

components, which would necessitate the use of different mixing parameters to match their respective 

fundamental gaps. As we have done successfully in past work, we instead avoid any material-specific 

parameterization of the exchange mixing parameter, accepting the unavoidable systematic error of a hybrid 

functional while retaining relative comparability of our results to those obtained for other hybrid materials 

when treated with the same approach. In past work, have found that the HSE06 mixing parameter 𝛼 = 0.25 

can reproduce experimentally observed level alignments near the band edges satisfactorily for layered 

organic-inorganic perovskites (see e.g. Ref [17] ). 

 

Figure S4. DFT-HSE06+SOC band structure for (PEA)2PbI4. The contribution of a) Pb (blue) and b) of I (green) to 

the frontier orbitals is indicated. The band gap is direct at 𝛤 and amounts to 2.01 eV. 

 

 

Figure S5. Decomposition of the DFT-HSE06 [18] plus SOC [15] total dielectric constant (dashed black) for the 

different crystallographic directions as a function of the photon energy into transitions starting and ending in orbitals 

of the following characters: organic-organic (magenta solid), organic-hybrid (magenta dashed), hybrid-organic 

(magenta dash-dotted); inorganic-inorganic (cyan solid), inorganic-hybrid (cyan dashed), hybrid-inorganic (cyan 

dash-dotted); hybrid-hybrid (orange solid), organic-inorganic (orange dashed), inorganic-organic (orange dash-

dotted). The character of the DFT orbitals is determined by a Mulliken decomposition of each orbital into contributions 

from the organic and inorganic framework, respectively. Orbitals that are more than 80% localized on a single 

component are denoted as organic or inorganic, respectively, whereas orbitals that are significantly extended across 

both components are denoted as “hybrid” (hyb) (see Fig. S6 for an example). The dipole operator is local, so any 

transitions between orbitals that are predominantly assigned to different spatial regions must happen in regions in 

which those orbitals overlap. 
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Figure S6. Example of a “hybrid” DFT orbital that is extended across both the organic and the inorganic component, 

rather than being localized on just one of the components. Orbital (eigenstate 1635 at -1.664 eV below the VBM) at 

𝛤 point calculated with DFT-HSE06+SOC. The real and imaginary part of the first and second spinor wave function 

are shown.  

Section S2.2 Note on computed band edge effective masses by HSE06 + SOC and PBE+SOC 
 
From the energy band structures computed for (PEA)2PbI4 using DFT-HSE06+SOC, shown in Fig S4, we 

computed the 𝛤 point effective masses for in-plane dispersion along the 𝛤𝑌, 𝛤𝑍, and 𝛤𝑀 paths in k-space. 

The effective masses were determined by fitting the calculated band structure to a parabolic dispersion 

curve over each path, 10% of the way to the Brillouin zone boundary. The unit cell used in the DFT-

PBE+TS structure relaxation contains two inorganic layers, A and B, resulting from a lack of registry 

between adjacent inorganic layers in the X-ray-structure of Du et al. Ref  [5] (see Ref.  [19] for an in depth 

discussion of the stacking disorder in a 2D perovskite). Due to small differences in atomic positions between 

the two inorganic layers, the valence and conduction band are split by a small, meV-scale value for each k 

point. To identify which bands belong to which layer, we performed a Mulliken analysis [20]. Table S2 

shows the resulting effective masses and energy gaps computed for each band associated with the two 

distinct layers, as well as the computed average in-plane effective masses and the reduced effective mass 

for each band/layer. The computed average in-plane reduced effective mass, 𝜇 =  1/(1/𝑚𝑒
∗ + 1/𝑚ℎ

∗ ), 

relevant to the discussion of excitonic effects in Section S4, is 0.110 averaged over the two layers. This 
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value compares favorably to the experimentally measured reduced effective mass reported recently by 

Dyksik et al., Ref. [21]. 

In Section S3 we analyze the near-band edge dielectric anisotropy calculated using DFT-PBE+SOC with a 

(3x15x15) k-grid, denser than the grid used in the DFT-HSE06+SOC calculation, and apply the results to 

determine the anisotropic optical response of the exciton in Section S4.  Consequently, it is important to 

confirm the consistency of the effective masses between the DFT-PBE+SOC and DFT-HSE06+SOC band 

structures. In Table S3 we show the 𝛤 point effective masses computed as above for in-plane dispersion 

along the 𝛤𝑌, 𝛤𝑍 and  𝛤𝑀 paths in k-space based on the DFT-PBE+SOC band structure.  The computed 

average in-plane reduced effective mass, 𝜇 =  1/(1/𝑚𝑒
∗ + 1/𝑚ℎ

∗ ), relevant to the discussion of excitonic 

effects in Section S4, is 𝜇 =  0.116 𝑚0 (where 𝑚0 is the free electron mass) averaged over the two layers. 

This value is within 5% of the value determined from the DFT-HSE+SOC band structure.  

Table S2. DFT-HSE06+SOC based effective masses in-plane. Effective masses m* in the table are given in units 

of the free electron mass and are computed near the 𝛤 point for in-plane dispersion along the 𝛤𝑌, 𝛤𝑍, and  𝛤𝑀 paths. 

They are obtained by parabolic fitting of the DFT-HSE06+SOC band structures shown in Fig. S4, 10% of the way to 

the respective Brillouin zone boundary, based on calculations with a (3x7x7) k-grid. The energy of each band at the 

𝛤 point with reference to the energy of the VBM is given for identification, as is an arbitrary label (A or B) denoting 

the distinct layer to which the corresponding band states are localized. The effective masses are nearly isotropic (with 

4%) and are equal between layers (to within 1%).   

  E(𝛤)-
EVBM 
(eV) 

m*(𝛤Y) m*(𝛤Z) m*(𝛤𝑀) Average 
m* 

Reduced mass 
𝜇∗ 

CB Layer A 2.019 0.193 0.194 0.192 0.193 Layer A 0.110 

CB Layer B 2.011 0.196 0.194 0.195 0.195 Layer B 0.111 

VB Layer A 0.000 0.248 0.249 0.259 0.254     

VB Layer B -0.014 0.250 0.253 0.263 0.257 Average 0.110 

 

Table S3. DFT-PBE+SOC based effective masses in-plane. Effective masses m* in the table are given in units of 

the free electron mass and are computed near the 𝛤 point for in-plane dispersion along the 𝛤𝑌, 𝛤𝑍, and  𝛤𝑀 paths. 

They are obtained by parabolic fitting of DFT-PBE+SOC band structures 10% of the way to the respective Brillouin 

zone boundary, based on calculations with a (3x15x15) k-grid. The energy of each band at the 𝛤 point with reference 

to the energy of the VBM is given for identification, as is an arbitrary label (A or B) denoting the distinct layer to 

which the corresponding band states are localized. The effective masses are nearly isotropic (with 5%) and are equal 

between layers (to within 1%).   

  E(𝛤)-

EVBM 

(eV) 

m*(𝛤Y) m*(𝛤Z) m*(𝛤𝑀) Average 

m* 

Reduced mass 

𝜇∗ 

CB Layer A 1.468 0.195 0.196 0.196 0.196 Layer A 0.115 

CB Layer B 1.459 0.199 0.196 0.199 0.198 Layer B 0.117 

VB Layer A 0.000 0.273 0.274 0.286 0.280   

VB Layer B -0.015 0.277 0.277 0.291 0.284 Ave 0.116 
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Section S3. Details of K.P model for free carriers in 2D perovskites 
 

In K.P theory, the energy band structure near the band edge at Γ is found by writing the Hamiltonian in 

a basis of the band edge periodic Bloch functions and then diagonalizing the Hamiltonian at non-zero wave 

vector 𝒌.  Then at any value of 𝒌 the conduction and valence band states may be written approximately in 

the form 

 
𝜓𝑛,𝒌(𝒓) = 𝑢𝑛,𝒌=0(𝒓) 

1

√𝑉
𝑒𝑖 𝒌⋅𝒓,             

(S4) 

where 𝑛 is a band index, 𝒓 is the electron coordinate, and  𝑉 is the crystal volume. In order to describe 

optical properties such as the transition dipole matrix element, we need expressions for the band edge Bloch 

functions 𝑢𝑛,𝒌=0 at 𝒌 = 0 for the conduction and valence bands. 

For the metal halide perovskites, the valence band  functions can be written  as the 2-fold degenerate  𝐽 =

1/2,  𝐽𝑧 = ±1/2 states with S orbital symmetry:  [22,23]  

 𝑢1
2
,
1
2

𝑣 = 𝑆 ↑ ,       𝑢1
2
,−
1
2

𝑣 = 𝑆 ↓.             (S5) 

Here, the symbol 𝑆 denotes an orbital function that transforms as an invariant under the operations of the 

crystal point symmetry group, while ↑ (↓) denote the spin functions with projection 𝑆𝑧 = +1 (−1).  Close 

to the band edge the energies of these states are given by 

 
𝐻𝑣±1/2(𝒌) = 𝐸𝑣  −

ℏ2𝐤2

2𝑚𝑣
 , 

(S6) 

where 𝑚𝑣 is the valence band effective mass at the band edge, 𝐸𝑣 and 𝐤 is restricted to the plane 

perpendicular to the stacking axis of the 2D perovskite.  Here it is assumed, as is confirmed by the DFT 

calculations in Fig S4, that dispersion in the direction perpendicular to the sheets is negligible, that is, the 

electronic coupling between individual lead-halide sheets is negligible. 

 

For the electrons in bulk cubic perovskites, the band edge Bloch functions are the 2-fold degenerate states 

of total angular momentum  𝐽 = 1/2, but with odd orbital parity:  

 
𝑢1
2
,
1
2

𝑐 =
−1

√3
{𝑍 ↑ +(𝑋 + 𝑖 𝑌) ↓};       𝑢1

2
,−
1
2

𝑐 =
1

√3
{−(𝑋 − 𝑖 𝑌) ↑ + 𝑍 ↓} .       

(S7) 

In this expression the symbols 𝑋, 𝑌, 𝑍 denote orbital functions that transform like x, y, z under rotations. 

For 2D perovskites however, the conduction band Bloch functions take a more complicated form due to the 

anisotropy of the 2D layer structure. As before, based on the negligible dispersion in the stacking direction, 

we neglect coupling between lead-halide sheets.  Then the Hamiltonian for a single sheet with zero in-plane 

wave vector consists of the spin-orbit interaction, 𝐻𝐿𝑆 = 
Δ𝑆𝑂

2
𝑳 ⋅ 𝑺  whose strength is given by Δ𝑆𝑂, the spin-
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orbit split-off parameter, and the effective crystal field splitting, 𝐻𝐶𝐹 , due to the confinement in the z 

direction: 

 𝐻0 = 𝐻𝐿𝑆 + 𝐻𝐶𝐹 . (S8) 

The effective crystal field Hamiltonian is represented in the 𝑋, 𝑌, 𝑍 orbital basis within a quasi-tetragonal 

approximation by [24] 

 

�̃�𝐶𝐹 =

(

 
 
 

𝛿

3
0 0

0
𝛿

3
0

0 0 −
2

3
𝛿 )

 
 
 

.       

(S9) 

The eigenvectors are found by diagonalizing the matrix  �̃�𝐶𝐹 + �̃�𝐿𝑆 in Eq. S8. The result is that the 𝐽 =

1

2
, 𝐽𝑧 = ±

1

2
  mix with the 𝐽 =

3

2
, 𝐽𝑧 = ±

1

2
 states, that is, the projection of total angular momentum on the z 

axis, 𝐽𝑧, remains a good quantum number.  The solution corresponding to the lowest energy conduction 

band has 𝐽𝑧 = ±
1

2
 Bloch functions given by [23,25–27], 

 
𝑢1
2

𝑐 = −{sin𝜃 𝑍 ↑ + cos 𝜃
(𝑋 + 𝑖 𝑌)

√2
↓} ;       𝑢

−
1
2

𝑐 = {−cos 𝜃
(𝑋 − 𝑖 𝑌)

√2
↑ + sin𝜃  𝑍 ↓} , 

(S10) 

where the phase angle 𝜃 determines the mixing of the 𝐽 =  ½ and 𝐽 =  3/2 states and is determined by 

the SOC Δ𝑆𝑂 and the crystal field 𝛿: [25–27]  

 
tan 2𝜃 =  

2√2  Δ𝑆𝑂
Δ𝑆𝑂 − 3𝛿

,                  𝜃 ≤
𝜋

2
.          

(S11) 

For reference, the tetragonal crystal field parameter in a similar PbI4-based 2D MHP has been previously 

measured as sin 𝜃 = 0.227 [26], while for PbBr4-based 2D MHPs the measured range is sin 𝜃 = 0.2 −

0.32[27,28]  [27,28] Close to the band edge, the energies of these states are given by 

𝐻𝑐±1/2(𝒌) = 𝐸𝑐 +
ℏ2𝐤2

2𝑚𝑐
 , 

(S12) 

where 𝑚𝑐 is the conduction band effective mass at the band edge, 𝐸𝑐, and again, 𝐤 is restricted to the plane 

perpendicular to the stacking axis of the 2D perovskite.  We will return to the question of the physical origin 

of the effective crystal field in Section S6 but proceed for the time being with the phenomenological 

description represented by Eqs. S10-11. 
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Section S3.1 Dielectric response of free carrier transitions in 2D perovskites 
 

Once the single particle states and their energies are known, the imaginary part of the dielectric function 

associated with polarization along direction �̂�, which we denote as 𝐼𝑚 𝜖𝑢𝑢(𝜔), can be determined using the 

formula [29]  

𝐼𝑚 𝜖𝑢𝑢(𝜔) =  
4 𝜋2𝑒2

𝑚0
2 𝜔2

 ∑
1

𝑉
𝑐,𝑣

∑|�̂� ⋅  𝒑𝑐,𝑣(𝒌)|
2

𝒌

 𝛿(𝐸𝑐(𝒌) − 𝐸𝑣(𝒌) −  ℏ𝜔), 
(S13) 

where 𝑚0  and 𝑒 are the free electron mass and charge; the first sum is taken over the two conduction and 

two valence bands per layer, indexed respectively by 𝑐, 𝑣; and 𝒑𝑐,𝑣(𝒌) is the interband momentum matrix 

element between conduction band state 𝑐, 𝒌 and valence band state 𝑣, 𝒌, given in terms of the momentum 

operator �̃� by  

𝒑𝑐,𝑣(𝒌) = ⟨𝜓𝑐,𝒌′|�̃�|𝜓𝑣,𝒌⟩ ≅ ⟨𝑢𝑐,𝒌|�̃�|𝑢𝑣,𝒌⟩ 𝛿𝒌′,𝒌 . (S14) 

Near the band edge, the Bloch functions 𝑢𝑛,𝒌 can be approximated by the band edge functions 𝑢𝑛0. In this 

approximation, 𝒑𝑐,𝑣(𝒌) ≈  𝒑𝑐,𝑣(0) and the imaginary part of the dielectric function can be approximated 

by 

𝐼𝑚 𝜖𝑢𝑢(𝜔) ≈  
4 𝜋2𝑒2

𝑚0
2 𝜔2

 ∑|�̂� ⋅  𝒑𝑐,𝑣(0)|
2

𝑐,𝑣

1

𝑉
∑𝛿(𝐸𝑐(𝒌) − 𝐸𝑣(𝒌) −  ℏ𝜔)

𝒌

 . 
(S15) 

It is convenient to recast this in terms of the total oscillator strength 𝑓𝑢 for polarization along direction �̂�, 

summed over the four possible transitions 𝑐, 𝑣 associated with a given wave vector 𝒌, where 

𝑓𝑢 =
2

𝑚0ℏ𝜔
∑|�̂� ⋅  𝒑𝑐,𝑣(0)|

2

𝑐,𝑣

. 
(S16) 

Using this expression, the imaginary part of the dielectric function can be approximated near the band edge 

by 

𝐼𝑚 𝜖𝑢𝑢(𝜔) ≈  
2ℏ 𝜋2𝑒2

𝑚0 𝜔
  𝑓𝑢    

1

𝑉
∑𝛿(𝐸𝑐(𝒌) − 𝐸𝑣(𝒌) −  ℏ𝜔)

𝒌

 . 
(S17) 

Within the K.P theory we can evaluate the oscillator strength explicitly.  Using Eqs. S5 and S10, the result 

is can be expressed in terms of the Kane matrix element 𝑃𝐾 = −𝑖⟨𝑆|�̃�𝑥|𝑋⟩ = −𝑖⟨𝑆|�̃�𝑦|𝑌⟩ = −𝑖⟨𝑆|�̃�𝑧|𝑍⟩ 

as [23] 

𝑓𝑢 = 
2 𝑃𝐾

2

𝑚0ℏ𝜔
𝑔𝑢, 

(S18) 

where the polarization dependence is given by the dimensionless functions 𝑔𝑢 whose values along the x,y, 

z directions are  

                   𝑔𝑧 =  2 sin
2 𝜃,     (S19) 
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  𝑔𝑥 = 𝑔𝑦 = cos
2 𝜃. (S20) 

Using Eq S18-S20 in Eq. S17 and noting that the oscillator strength associated with the two in-plane 

directions x, y are equal ( 𝑓𝑥 = 𝑓𝑦) implies that  𝜖𝑥𝑥(𝜔) = 𝜖𝑦𝑦(𝜔) in this model, we see that the phase angle 

𝜃 can be determined from the ratio of the imaginary part of the dielectric function for polarization in the 

out-of-plane versus the in-plane directions:  

𝐼𝑚 𝜖𝑧𝑧(𝜔)

𝐼𝑚 𝜖𝑥𝑥(𝜔)
=
𝐼𝑚 𝜖𝑧𝑧(𝜔)

𝐼𝑚 𝜖𝑦𝑦(𝜔)
=
𝑓𝑧
𝑓𝑥
=  2 tan2 𝜃     

(S21) 

This identification allows us to estimate the band edge oscillator strength ratio 𝑓𝑧 𝑓𝑥⁄  directly from the DFT 

calculations of the imaginary part of the dielectric function, shown in Fig. 4d of the main text. In Fig. S7 

panel (a) we plot the imaginary part of the dielectric function along the three directions 𝑎, 𝑏, 𝑐 calculated as 

in Fig 4 of the main text, but using DFT-PBE+SOC with a denser (3x15x15) k-grid and a Gaussian 

broadening function with full-width at half-maximum (FWHM) set to 100 meV. As shown in Fig. 4d of the 

main text, the near equality of the in-plane dielectric response along the in-plane 𝑏 and 𝑐 directions, 

  𝜖𝑏𝑏(𝜔) ≅ 𝜖𝑐𝑐(𝜔)  within 1.2%, is evident in the figure, which justifies the use of the quasi-tetragonal 

approximation developed above. In Fig. S7 panel (b) we show the ratio 𝐼𝑚 𝜖⊥ 𝐼𝑚 𝜖∥⁄  from the DFT-

PBE+SOC calculation shown in Fig S7 panel (a), where 𝐼𝑚 𝜖⊥ corresponds to the out-of-plane 

crystallographic direction 𝑎, and 𝐼𝑚 𝜖∥ corresponds to the average of the two in-plane directions 

𝐼𝑚 𝜖𝑏𝑏 𝑎𝑛𝑑 𝐼𝑚 𝜖𝑐𝑐. The ratio is 7.71% at the band edge, 𝐸𝑔 = 1460 meV, and increases with increasing 

energy. At an energy 𝑇10 = 120 meV above the band edge, corresponding to the calculated kinetic energy 

of the 1S exciton state (see Section 5.2), the ratio increases to 8.68%. Using Eq. S21 these numbers imply  

sinθ = 0.193 at the band edge; and an average value sinθ = 0.204 for the 1S exciton. 

 In the next section, we use the multiband effective mass theory to show that the ratio of the oscillator 

strength of the exciton along the extra-ordinary and ordinary directions is also determined by Eq. S21 and 

can therefore be estimated from the DFT-PBE+SOC calculation of the dielectric response shown in Fig S7. 
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Figure S7. Imaginary part of the dielectric function in PEPI.  Panel (a): Imaginary part of the dielectric function 

𝐼𝑚 𝜖 along the three crystallographic directions 𝑎, 𝑏, 𝑐 calculated using DFT-PBE+SOC and a Gaussian broadening 

function with FWHM set to 100 meV. The dielectric function along the two in-plane directions 𝑏, 𝑐 are the same 

within 1.2% over the range plotted.  Panel (b):  ratio 𝐼𝑚 𝜖⊥ 𝐼𝑚 𝜖∥⁄  calculated setting 𝐼𝑚 𝜖⊥ = 𝐼𝑚 𝜖𝑎𝑎, corresponding 

to the out-of-plane polarization, and  𝐼𝑚 𝜖∥ = (𝐼𝑚 𝜖𝑏𝑏 + 𝐼𝑚 𝜖𝑐𝑐)/2,  corresponding to the average dielectric 

associated with in-plane polarization. At the bandgap calculated in DFT-PBE+SOC, 𝐸𝑔 = 1460 meV, marked in red, 

the ratio 𝐼𝑚 𝜖⊥(𝜔) 𝐼𝑚 𝜖∥(𝜔)⁄ = 7.71%.  At an energy 𝑇10 = 120 meV above the band gap, corresponding to the 

calculated average kinetic energy of the 1S exciton (see section S5.2), the dielectric anisotropy 𝐼𝑚 𝜖𝑧𝑧 𝐼𝑚 𝜖𝑥𝑥⁄ =
8.68%. See text. 

Section S4. Effective mass model of excitons in 2D perovskites and their 

dielectric response. 
 

In the last section we used the K.P method to relate the anisotropic dielectric function calculated in the 

near band edge region to the properties of the band edge Bloch functions dictated by symmetry.  Using the 

expressions developed we were able to extract crystal field parameters which determine the near band edge 

anisotropy from the anisotropic dielectric function calculated within DFT. In this section, we use the 

multiband effective mass theory based on multiband K.P to show that the same symmetry properties of the 

band edge Bloch functions determine the anisotropic dielectric properties of the exciton as well. In the 

discussion that follows we retrace the analysis first presented in Refs [23,24] in the context of bulk 

perovskites and perovskite nanocrystals. 

The wave function of an exciton confined in a single 2D MHP layer can be written in the effective mass 

approximation as a product wave function in the form of a Bloch wave [23], 

 𝜓𝐽𝑧𝑒,𝐽𝑧ℎ𝑲;𝑛𝑚
𝑒𝑥 (𝒓𝑒 , 𝒓ℎ) =  𝑢𝐽𝑧𝑒(𝒓𝑒)  𝑢𝐽𝑧ℎ(𝒓ℎ)  𝑓𝑲;𝑛𝑚(𝒓𝑒 , 𝒓ℎ).    (S22) 

Here, 𝑢𝐽𝑧𝑒  and 𝑢𝐽𝑧ℎ, respectively denote the band-edge periodic Bloch functions for the electron and hole, 

which as we showed above in Eqs. S5 and S10 can be represented in terms of eigenstates of the projection 

of the total angular momentum in the stacking direction, which we take as z, while the envelope function 

for the exciton, 𝑓𝑛,𝐾(𝒓𝑒 , 𝒓ℎ),  describes the motion of the electron and hole within the layer. We take the 

layer to be normal to the z direction and of thickness d < Λ, where Λ is the spacing between layers and 
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neglect coupling between the layers as justified by the lack of dispersion in the stacking direction evident 

in the DFT calculations shown in Fig S4. Then, considering the 2D exciton states corresponding to the 

lowest confined state in the sheet, modelled as a quantum well of thickness 𝑑, the exciton envelope function 

is described by the expression, [29]  

 
𝑓𝑲;𝑛𝑚 (𝒓𝒆, 𝒓ℎ) =

1

√𝑆
𝑒𝑖𝑲∙𝑹

2

𝑑
cos

𝜋𝑧𝑒
𝑑
cos

𝜋𝑧ℎ
𝑑
𝜙𝑛𝑚(𝒓𝒆 − 𝒓ℎ). 

(S23) 

Here, the envelope function, normalized over the sheet area, 𝑆, is specified in terms of the center-of-mass 

(COM) wave vector 𝑲 and quantum numbers 𝑛,𝑚 representing the principle and azimuthal quantum 

numbers associated with the state of internal relative motion of the electron (e) and hole (h) in the layer.  

The lowest exciton has quantum numbers 𝑛 = 1 and 𝑚 = 0 and can be considered the 2D analogue of a 1s 

hydrogenic state. In the absence of dielectric confinement effects, this “ground” exciton level has a relative 

e/h coordinate wave function given by [30], 

 
𝜙10(𝒓) =

4

𝑎𝑥

1

√2𝜋
𝑒−2𝑟/𝑎𝑥  . 

(S24) 

In the expression above, 𝑎𝑥 is the three-dimensional exciton Bohr radius, given by 𝑎𝑥 = 𝜖ℏ
2 𝜇𝑒2⁄  where 𝜖 

is the effective dielectric constant that screens the e/h Coulomb interaction [31] and 𝜇 is the effective mass 

given in terms of the electron and hole effective masses 𝑚𝑒 and 𝑚ℎ in the plane of the lead-halide sheet by 

1/𝜇 = 1/𝑚𝑒  + 1/𝑚ℎ. The energy of the excitons associated with the relative e/h and COM motion is 

given by, 

𝐸𝑛,𝑚(𝑲) = 𝐸𝑔 + ℰ𝑛 +
ℏ2𝐊2

2𝑀
 , 

(S25) 

where 𝐸𝑔is the band gap energy, ℰ𝑛 are the energy eigenvalues associated with solution of the electron-

hole relative motion problem, and the third term represents the kinetic energy of exciton COM motion 

involving the total exciton effective mass 𝑀 = 𝑚𝑒 +𝑚ℎ.  

In addition to the energy associated with electron-hole relative and COM motion given in Eq S25 the 

exciton also has a fine structure determined by spin-dependent interaction between the electron and hole.  

The electron-hole exchange interaction can be written in the effective mass approximation as a contact 

interaction between the electron and hole spins [32]: 

𝐻𝑆𝑅 =   
1

2
 𝐶 Ω [𝑰  −  𝝈𝑒 . 𝝈ℎ] 𝛿(𝒓𝑒 − 𝒓ℎ) , 

(S26) 

where  𝝈𝑒 and 𝝈ℎ are Pauli operators representing the spin (not the total angular momentum) of the electron 

and the hole, respectively;  𝒓𝑒  and 𝒓ℎ are the e/h position vectors, 𝐶 is the exchange constant for the 

material, and  Ω is the unit cell volume. In Refs.  [23,24], it was shown that averaging the exchange 

Hamiltonian Eq. S26 over the envelope function portion of Eq S22 results in an effective spin operator for 
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the bulk exciton which acts on the Bloch functions within the total exciton wavefunction, Eq. S22.  This 

effective Hamiltonian can be written,  

𝐻𝑆𝑅 =   
1

2
 𝑤 [𝑰  −  𝝈𝑒 . 𝝈ℎ]  .   

(S27) 

Here, 𝑤 is the effective exciton exchange constant, given by  𝑤 = 𝐶 𝛩 where the term 𝛩 is the electron-

hole overlap factor, representing the probability that the electron and hole reside in the same unit cell. For 

the exciton state indexed by it can be written,  

𝛩𝑛𝑚,𝑲 =  Ω ∬ 𝑑3𝒓𝒆𝑑
3

𝑉

𝒓𝒉 𝑓𝑛𝑚,𝐾
∗ (𝒓𝑒 , 𝒓ℎ)𝛿(𝒓𝑒 − 𝒓ℎ)𝑓𝑛𝑚,𝑲(𝒓𝑒 , 𝒓ℎ).  

(S28) 

Evaluating the overlap factor for the ground exciton level (𝑛 = 1 , 𝑚 = 0) in the absence of dielectric 

confinement effects we find,  

𝛩10,𝑲 = Ω
3

2𝑑
 
8

𝜋𝑎𝑥
2.  

(S29) 

For reference the value of the effective exciton exchange constant determined from measurements of the 

exciton fine structure in a related PbI4-based 2D MHP is 𝑤 = 12meV [27]. To develop a matrix 

representation for the exciton exchange Hamiltonian, Eq. S27, we use the electron hole pair basis,  

𝑃1 = 𝑢1/2
𝑒 𝑢1/2

𝑒ℎ ; 𝑃2 = 𝑢1/2
𝑒 𝑢−1/2

ℎ ;  𝑃3 = 𝑢−1/2
𝑒 𝑢1/2

ℎ ;  and 𝑃4 = 𝑢−1/2
𝑒 𝑢−1/2

ℎ  , (S30) 

 where 𝑢±1/2
𝑒(ℎ)

 are the band edge Bloch functions for the conduction and valence bands defined in Eqs. S5 

and S10. We find the exchange Hamiltonian has the following representation:  

�̃�𝑃𝑎𝑖𝑟 = 𝑤 (

cos2 𝜃 0 0 0
0 sin2 𝜃 sin2 𝜃 0
0 sin2 𝜃 sin2 𝜃 0
0 0 0 cos2 𝜃

) 

(S31) 

It is convenient to diagonalize this Hamiltonian with the transformation [33], 

�̃�𝑋𝑌𝑍 =   �̃�2
†
�̃�1

†
�̃�𝑃𝑎𝑖𝑟  �̃�1 �̃�2 , 

where the unitary transformation matrices   �̃�1, �̃�2 are given by, 

                          �̃�1 =

(

 
 

0 1 0 0
−1

√2
0

1

√2
0

1

√2
0

1

√2
0

0 0 0 1)

 
 

       and     �̃�2 =

(

 
 

1 0 0 0

0
−1

√2

𝑖

√2
0

0 0 0 1

0
1

√2

𝑖

√2
0
)

 
 

 

The first transformation ( �̃�1) transforms the Hamiltonian to a basis of total angular momentum 𝐹 =

 𝐽𝑒 + 𝐽ℎ, taken in the order, |𝐹, 𝐹𝑧 > =  |0,0 >, |1, +1 > , |1,0 > , |1,−1 >, while the second diagonalizes 

the Hamiltonian in a basis of  exciton states, taken in the order |𝐷 >, |𝑋 >, |𝑌 >, |𝑍 >,  whose  transition 
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dipoles to the crystal ground state respectively vanish (D)   or are aligned along the symmetry directions 

𝑥, 𝑦, 𝑧.  In this basis the exchange Hamiltonian is diagonal with exciton eigen-energies given by, 

𝐸𝑋 = 𝐸𝑌 = 𝑤  cos
2 𝜃,   

𝐸𝑍 = 2 𝑤 sin
2 𝜃,   

𝐸𝐷 = 0   .                 

(S32) 

It is straightforward to determine the oscillator strength of each exciton state |𝑋𝑖 >,  where 𝑋𝑖  denotes 

D, X, Y or Z. The transition dipole matrix elements (DME) are found as the matrix element of the 

momentum operator, �̂�, between a given exciton total wave function,  𝜓𝑋𝑖
𝑒𝑥 = Φ𝑋𝑖𝑓𝑛𝑚;𝑲(𝒓𝒆, 𝒓𝒉), which is 

written as the product of the Bloch function eigenstate, Φ𝑋𝑖 = ∑ 𝑐𝑖𝑃𝑖
4
𝑖=1  and the envelop function 

𝑓𝑛𝑚;𝑲(𝒓𝒆, 𝒓𝒉), and the crystal ground state G, which is represented by 𝛿(𝒓𝒆 − 𝒓𝒉). Denoting the exciton 

DME for exciton state 𝑋𝑖 as 𝑃𝑋𝑖 and computing the oscillator strength in the usual way as 𝑓𝑋𝑖
𝑒𝑥𝑐 =

2 𝑃𝑋𝑖
2 /(𝑚0ℏ𝜔) the result is [23,24],  

𝑓𝑋
𝑒𝑥𝑐 = 𝑓𝑌

𝑒𝑥𝑐 =
2 𝑃𝐾

2

𝑚0ℏ𝜔
  𝒦2 cos2 𝜃, 

𝑓𝑍
𝑒𝑥𝑐 =

2 𝑃𝐾
2

𝑚0ℏ𝜔
  𝒦2  2 sin2 𝜃, 

𝑓𝐷
𝑒𝑥𝑐 = 0  , 

(S33) 

Here, 𝑃𝐾 is the Kane momentum matrix element as before while the overlap factor 𝒦 is given by,  

𝒦 = ∫ 𝑓𝑛,𝑚;𝑲(𝑟, 𝑟)𝑑𝑉
𝑉

, 
(S34) 

Evaluating Eq. S34 for the ground exciton relative motion state 𝑛 = 1, 𝑚 = 0,  and using the definition of 

the Kane energy, 𝐸𝑝  =  2𝑃𝐾
2/𝑚0, the oscillator strength per unit area for the exciton in a single lead-halide 

sheet of area 𝑆 is, 

𝑓𝑋𝑖
𝑒𝑥𝑐

𝑆
=  
𝐸𝑝

ℏ𝜔
 |𝜑10(0)|

2 𝑔𝑋𝑖 . 
(S35) 

In this expression, the term  𝑔𝑋𝑖 reflects the anisotropy of the 2D MHP structure and is given in Eq. S19-

S20, namely, 𝑔𝑍 = 2 sin
2 𝜃  while 𝑔𝑋 = 𝑔𝑌 = cos

2 𝜃.  This makes intuitive sense:  The anisotropy of the 

exciton oscillator strength directly reflects the anisotropy of the band-edge free carrier transitions, which is 

determined by the crystal field phase factor 𝜃. Modelling the 2D MHP crystal with sheets separated by 

spacing Λ, the oscillator strength per unit volume is then [34],  

𝑓𝑋𝑖
𝑒𝑥𝑐

𝑉
= 
2 𝑃𝐾

2

𝑚0ℏ𝜔

 |𝜑10(0)|
2

Λ
 𝑔𝑋𝑖 

(S36) 
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Using this expression we can now describe the polarization dependent intrinsic dielectric response of the 

exciton 𝑋𝑖 [35]: 

𝜖𝑋𝑖(𝐸) =  𝜖∞ {1 + 
ℏ𝜔𝐿𝑇,𝑋𝑖

(𝐸𝑋𝑖 − 𝐸) − 𝑖 (
Γ𝑋𝑖
2 )

}. 

(S37) 

This expression represents the dielectric response of the excitons sitting on a non-resonant background 

dielectric 𝜖∞ . In the brackets, Γ𝑋𝑖 is the full-width at half maximum of the exciton resonance, reflecting the 

exciton broadening, and polarization dependence enters through the coupling parameter ℏ𝜔𝐿𝑇,𝑋𝑖, known as 

the longitudinal (L) - transverse (T) exciton splitting, which is proportional to the exciton oscillator strength 

per unit volume:  [30],  

ℏ𝜔𝐿𝑇,𝑋𝑖 =
𝑒2ℏ2

2𝜖∞𝑚0ℏ𝜔
  
𝑓𝑋𝑖

𝑒𝑥𝑐

𝑉
 . 

(S38) 

Inspection of Eqs. S36-S38 reveals that the ratio of the polarization dependent oscillator strength of the 

exciton transitions extracted from analysis of the dielectric response is,  

𝑓𝑧
𝑒𝑥𝑐

𝑓𝑥
𝑒𝑥𝑐 =  2 tan

2 𝜃.   
(S39) 

This result is the same as was derived for the free carrier transitions near the band edge, Eq. S21.  

Referring to Fig S7, the DFT-PBE+SOC calculation shows that z:x oscillator strength ratio has a weak 

energy dependence above the band gap.  In this case the appropriate ratio for the exciton corresponds to 

that at the energy 𝐸𝑔 + 𝑇10, where 𝑇10 is the kinetic energy associated with internal electron-hole motion 

within the 1S exciton level. In Section 6 we calculate the exciton binding energy for PEPI using the 

experimental reduced effective mass (𝜇 = 0.087, Ref  [21]) and estimate 𝑇10,𝑒𝑥𝑝 = 160meV.  Correcting 

the kinetic energy for the ratio of the experimental reduced effective mass to the effective mass determined 

from the DFT-PBE+SOC band structure (μ = 0.116, see Table S3), we find 𝑇10 = 120 meV.The 

corresponding estimate of the ratio 𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐 ~ 8.7⁄ % on the basis of the DFT-PBE+SOC calculation 

shown in Fig S7. 

Section S5. Effect of dielectric discontinuity on exciton optical response 

and binding energy. 
In sections S2 and S3 we analyzed the anisotropy of the intrinsic dielectric response of the near-band-

edge free carrier transitions and of the excitons in 2D PEPI and showed how the intrinsic excitonic 

polarization anisotropy can be connected to DFT calculations of the dielectric function near the band edge.  

A key element missing from the analysis so far is the fact that the excitons are embedded in a dielectric 

superlattice:  That is, excitons are confined to the 2D lead-halide layers with a relatively high background 
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dielectric constant (relative dielectric ranging from 4-6), which is surrounded by organic layers with a lower 

dielectric (with relative dielectric in the range 2-3); moreover this dielectric structure is periodic in the 

direction normal to the layers.   

The resulting anisotropic dielectric environment has significant implications to both the optical 

response and the exciton binding energy. In the first case, the anisotropic dielectric environment causes an 

enhancement of the polarization anisotropy above that expected purely on the basis of the anisotropy of the 

electronic states owing to the distinct boundary conditions associated with electric field vectors parallel 

versus perpendicular to a planar dielectric interface, as shown recently by DeCresent et al. in Ref  [36]. In 

the second case, the electron-hole interaction responsible for the exciton binding must include the effects 

of image charges owing to the dielectric discontinuity. The resulting interaction of the electron (hole) with 

the image charges of the hole (electron) causes a significant increase in the electron binding energy relative 

to the situation in traditional III-V semiconductor multi-quantum well systems which lack significant 

dielectric discontinuity between the well and barrier regions.  

In this section we first employ the analysis of DeCresent et al. to infer the intrinsic dielectric constants 

of the inorganic well and organic barrier layers of 2D PEPI from the spectroscopic ellipsometry 

measurements discussed in the main text. Then, to confirm that the inferred dielectric parameters are 

reasonable, we use the theory developed by Guseinov in Ref.  [37] for exciton binding in dielectric 

multilayers to calculate the exciton binding energy. Using measured effective masses [21]  and the inferred 

dielectric parameters we find excellent agreement with the exciton binding energy recently measured in 2D 

PEPI [21]. 

Section S5.1 Effect of dielectric discontinuity on exciton optical response 
 

The analysis of DeCresent et al. in Ref [36] begins with the observation that at a planar dielectric 

interface the electric field components parallel versus perpendicular to the interface are subject to distinct 

boundary matching conditions: Denoting the dielectric of the inorganic well as 𝜖 and the organic barrier as 

𝜖𝑏, the boundary matching conditions from the left (-) t the right (+) side of an interface are, 

𝐸∥
−
= 𝐸∥

+, (S40) 

ϵ⊥E⊥
− = ϵb,⊥E⊥

+  .  

As a consequence of these matching conditions, excitons in the inorganic layers interact with light polarized 

parallel to the interface without any depolarization effect, while the interaction of excitons with light 

polarized perpendicular to the interface is attenuated by a depolarization factor; DeCresent et al. showed 

that the resulting effective oscillator strength for the exciton out of plane is [36] 

𝑓𝑧
𝑒𝑓𝑓 = (

ϵ̅⊥
ϵ⊥
)
2

𝑓𝑧
𝑒𝑥𝑐 , 

(S41) 



20 
 

where ϵ̅⊥ denotes the effective out-of-plane permittivity of the superlattice, and is given in terms of the 

intrinsic out-of-plane permittivities of the well (ϵ⊥) and barrier (ϵ𝑏,⊥) layers and volume fill fraction, 𝑓,  of 

the high-dielectric well layer by, 

ϵ̅⊥ = 
1

𝑓
ϵ⊥
⁄ + 

(1 − 𝑓)
ϵb,⊥⁄  

    . 
(S42) 

Notably, the effective out-of-plane permittivity ϵ̅⊥ is what is measured in polarization-resolved 

spectroscopic ellipsometry. Consequently, with information about the fill fraction, f, and the organic 

dielectric permittivity ϵb,⊥ Eq. S42 can be used to estimate the intrinsic dielectric permittivity of the 

inorganic later. Using the lead-halide and organic layer thicknesses determined for PEPI in Ref [7] we 

estimate 𝑓 = 0.39, taking the refractive index of the organic layer to be isotropic with value 𝑛 = 1.6  [36] 

and using the measured 𝑛𝑒 =  1.8  at the exciton line from Fig 2(c) of the main text, and using ϵ̅⊥ = 𝑛𝑒
2, 

we estimate the intrinsic dielectric permittivity of the inorganic well layer to be ϵ⊥ = 5.4.   Using these 

values we estimate the correction factor relating the measured, effective, out-of-plane to in-plane oscillator 

strength ratio of the exciton, to the intrinsic oscillator strength ratio, as (ϵ⊥ ϵ̅⊥⁄ )2: 

(
𝑓𝑧
𝑒𝑥𝑐

𝑓𝑥
𝑒𝑥𝑐)

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐

= (
ϵ⊥
ϵ̅⊥
)
2

(
𝑓𝑧
𝑒𝑥𝑐

𝑓𝑥
𝑒𝑥𝑐)

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

. 
(S43) 

From the measured value (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑚𝑒𝑎𝑠~0.059 for cleaved single crystals (see Table 1) we 

estimate the intrinsic ratio (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐~0.166.  These values are summarized in Table S4 along 

with the estimate of the intrinsic exciton oscillator strength ratio derived from the   DFT-PBE+SOC 

calculations shown in Fig S7. The DFT based estimate, at 0.087, is about 48% lower than the intrinsic ratio 

inferred from the measured values by applying the classical dielectric anisotropy model. This discrepancy 

may be due the fact that the DFT methods applied here are restricted to single-particle band-to-band 

transitions and do not account for excitonic effects, which are modelled within a simple effective mass 

approximation, or alternately due to a failure of the classical dielectric interface model employed to estimate 

the local field screening corrections, which assumes abrupt dielectric interfaces. As an independent check 

of the reasonableness of the intrinsic dielectric parameters recovered using the dielectric anisotropy model, 

we made a calculation of the exciton binding energy using the recovered dielectric parameters, which is 

described next. 
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Table S4. Intrinsic dielectric properties and oscillator strength ratio 

Parameter Value Source 

Inorganic fill fraction f 0.39 Ref. [7] 

Organic layer relative dielectric permittivity ϵb,⊥ 2.56 Ref. [36] 

Extraordinary index 𝑛𝑒at exciton line 1.8 This work, Fig 2(c) 

Inorganic layer intrinsic dielectric permittivity ϵ⊥ 5.4 This work Eq. S42 

Correction factor, (
ϵ⊥

ϵ̅⊥
)
2

 
2.81 This work, Eq. S43 

Measured exciton anisotropy: (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑚𝑒𝑎𝑠 0.059 This work, Table 1, cleaved 

crystal sample 

Estimated intrinsic exciton anisotropy from measurements and 

dielectric anisotropy model:  (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  

0.166 This work, Eq. S43 

Estimated intrinsic exciton anisotropy from DFT-PBE+SOC 

calculations:  (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  

0.087 This work, Fig S7 

 

Section S5.2 Effect of dielectric discontinuity on exciton binding energy 
 

It is well known that in the presence of significant dielectric discontinuities between well and barrier 

layers, such as occur in 2D MHPs such as PEPI, the influence of image charges must be accounted for in 

calculating the exciton binding energy  [8,37–41]. The effects were first modelled by Rytova  [38] and 

Keldysh [39] within a 3-layer slab dielectric model. That is, Rytova and Keldysh solved for the potential of 

a point charge located within a dielectric well surrounded by semi-infinite dielectric barrier layers. The 

Rytova/Keldysh solution was further restricted to the limiting approximation that the electron-hole 

separation is much larger than the film thickness [38,39]. In 1988 Hanamura applied a real-space image 

charge potential for the 3-layer slab allowing the latter approximation to be relaxed [40]; the Hanamura 

method was applied in 1992 by Hong and co-workers [8] in a variational calculation of the exciton binding 

energy in 2D MHPs including PEPI using trial wavefunctions of the form given above in Eq. S23, i.e. 

assuming infinite barriers at the well/barrier interface [8], which is a reasonable approximation given the 

dissimilarity of the periodic Bloch functions between the well and barrier layers  [42]. However, the 

Hanamura/Hong method significantly overestimates the image charge effect in dielectric superlattices 

where the low dielectric layer thickness is comparable to the high dielectric well thickness:  The magnitudes 

of higher order image charges are overestimated when the high dielectric of adjacent wells in the 

superlattice is neglected. The 3- layer slab approximation was relaxed in the calculation by Guseinov in 

1984  [37] who wrote an exact solution for the electron-hole interaction in a dielectric superlattice using k-



22 
 

space methods; the Guseinov potential was adopted by Muljarov et al. who applied it to 2D MHPs including 

PEPI using a finite well/barrier heterointerface model  [41]. The latter assumption, as noted in Ref.  [42], is 

questionable due to the chemical dissimilarity of the well/barrier constituents; moreover this assumption in 

conjunction with the abrupt dielectric discontinuity creates singularities in the Coulomb self-energy which 

necessitates the introduction of an ad-hoc interface transitional layer as a fitting parameter  [41]. 

To avoid this ad-hoc procedure, we apply the exact solution for the electron-hole interaction in a dielectric 

superlattice derived by Guseinov  [37] and calculate the exciton binding energy using a variational 

procedure using an exciton ansatz function of the form given in Eq. S23. 

Section S5.2.1 Guseinov potential 
 

Guseinov, in Ref.  [37], solved Poisson's equation using Fourier analysis to determine the electrostatic 

potential at a position (𝑧, 𝜌)  in cylindrical coordinates, given a source located at  (𝜌, 𝑧𝑠) within a system 

comprising a dielectric superlattice normal to the z direction. The superlattice is comprised of well layers 

of thickness 𝑑 with relative dielectric  𝜖 alternating with barrier layers of thickness 𝑏 and dielectric  𝜖𝑏. For 

the special case that the source and observation points reside in the same well layer, taken to be located 

−𝑑 <  𝑧;  𝑧𝑠 <  0, the solution has the form, 

 
𝑉(𝑧, 𝑧𝑠, 𝜌) =

1

(2𝜋)2
∫𝑑2 𝑘𝑒−𝑘𝜌�̃�(𝑧, 𝑧𝑠, 𝑘) 

 

 
                       =

1

2𝜋
∫ 𝑘
∞

0

𝑑𝑘𝐽0 (
𝜌𝑥

𝑏
) �̃�(𝑧, 𝑧𝑠, 𝑘) 

(S44) 

where the Fourier transform of the potential, �̃�, is given in SI units by, 

 �̃�(𝑧, 𝑧𝑠, 𝑘) =
𝑒

4𝜋𝜖0𝜖𝑏𝑘
Φ̃(𝑧, 𝑧𝑠, 𝑘) ; 

(S45) 

The dimensionless FT function Φ̃ is given by, 
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Φ̃(𝑧𝑒 , 𝑧ℎ , 𝑘) =

𝜋

sinh[𝑘0]

1

(α sinh[𝑘(𝑏 + 𝑑)] + β sinh[𝑘(𝑏 − 𝑑)])
  

× {2η cosh[𝑘0] cosh[k(𝑧> − 𝑧<)] (α cosh[𝑘(𝑏 + 𝑑)] − β cosh[𝑘(𝑏 − 𝑑)])

−  2 𝜂 sinh[𝑘0] sinh[𝑘(𝑧> − 𝑧<)] (𝛼 sinh[𝑘(𝑏 + 𝑑)] + β sinh[𝑘(𝑏 − 𝑑)])

−  2cosh[𝑘(𝑧> − 𝑧<)](𝛼
2 + 𝛽2 − 2 α β cosh[𝑘 𝑏]2)

+ (α − β)2cosh[𝑘(2𝑑 + 𝑧> + 𝑧<)]

−  2 𝜂 cosh[𝑘0](α cosh[𝑘(𝑧> + 𝑧< + 𝑑 − 𝑏)]

− β cosh[𝑘(𝑧> + 𝑧< + 𝑑 + 𝑏)])

+ cosh[𝑘(𝑧> + 𝑧<)]((α
2 + β2)cosh[2𝑘 𝑏] − 2α β)

−  𝜂 sinh[𝑘(𝑧> + 𝑧<)]sinh[2𝑘 𝑏]} . 

S46) 

In this expression, 𝑧> (𝑧<) is the greater (lesser) of 𝑧, 𝑧𝑠,  𝑘 is the component of the wave-vector in the  𝑧 

direction, and the other term are defined by, 

 
𝜂 = 𝜖𝑏/𝜖;               𝛼 =

1 + 𝜂

2
 ;            𝛽 =

1 − 𝜂

2
 

 

 
𝑘0 = cosh

−1 (
2𝛼2

2𝛼 − 1
sinh(𝑘𝑏) sinh(𝑘𝑑) + cosh(𝑘(𝑏 − 𝑑))) 

(S47) 

Adopting a variational wavefunction for the lowest energy exciton of the form Eq S23, but taking the 

quasi-2D exciton radius 𝑎  as a variational parameter, 

 
𝜓1,0(𝑧𝑒 , 𝑧ℎ , 𝝆) =

2

𝑑
cos

𝜋(𝑧𝑒 + 𝑑/2)

𝑑
cos

𝜋(𝑧ℎ + 𝑑/2)

𝑑

4

𝑎

1

√2𝜋
𝑒−2𝜌/𝑎  , 

(S48) 

we compute the energy for the 1S exciton state (n=1, m=0, where quantum numbers 𝑛,𝑚 represent the 

principle and azimuthal quantum numbers associated with the state of internal relative motion) as, 

 
E1,0(a) = ∫ ∫ ∫ ∫ ρ

∞

0

2π

0

0

−d

0

−d

 dρ dθ dzedzh ψ10
∗ (ρ; a) �̂�𝑟𝑒𝑙  ψ10(ρ; a)  . 

(S49) 

Here, the effective Hamiltonian for the electron/hole relative motion given by, 

 
�̂�REL = −

ℏ2∇𝜌
2

2𝜇
− 𝑒𝑉(𝑧𝑒 , 𝑧ℎ , 𝜌), 

(S50) 

where the interaction potential V is given by Eq S44. The optimum value of the variational parameter is 

the value that minimizes the energy: 𝑎10 = 𝑎𝑚𝑖𝑛. The kinetic energy terms evaluate to  [30], 

 
T1,0 =

ℏ2

2μ

4

𝑎10
2   , 

(S51) 

where  𝜇 is the reduced effective mass of the exciton.  The same procedure can be used to calculate higher 

exciton states. For example, the 2S (n=2, m=0) exciton state is calculated using the ansatz function, 
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𝜓2,0(𝑧𝑒 , 𝑧ℎ , 𝝆) =
2

𝑑
cos

𝜋(𝑧𝑒 + 𝑑/2)

𝑑
cos

𝜋(𝑧ℎ + 𝑑/2)

𝑑

1

√2π

4e−
2ρ
3𝑎 (1 −

4ρ
3𝑎
)

3√3𝑎
, 

(S52) 

In  Table S5 we summarize the calculated results as well as the parameters used in the calculation. The 

dielectric parameters used are taken from  Table S4 and represent our analysis of the ellipsometry data at 

the exciton line as described in Section S5.1, while the reduced effective mass of the exciton is taken from 

the magneto-reflectivity measurements in the recent work by Dyksik et al., Ref  [21]. Referring to  

Table S3, the band edge reduced effective mass calculated from the DFT-HSE06+SOC band structure   is 

μ = 0.116 averaged over the in-plane k-space directions, in reasonable agreement with the experimental 

value. Using the experimental effective mass and dielectric parameters, the exciton binding energy 

calculated using Eq. S49 is E1,0(𝑎10) =  −259 meV  relative to the band edge, in excellent agreement with 

the experimental value -265 meV from Ref.  [21]. From the optimum quasi-2D exciton radius 𝑎10 we 

estimate the diamagnetic shift coefficient 𝜎 =1.03 𝜇eV/T2 in comparison with the reported value 𝜎 =0.43 

𝜇eV/T2 from Ref.  [21].  The discrepancy between the calculated and experimentally reported value of the 

diamagnetic shift coefficient is likely related to the small diamagnetic shift relative to the exciton linewidth 

(~ 1.5meV over 60T in comparison with a ~10 meV PL linewidth). In  Table S5 we also show the result of 

a variational calculation of the 2S (n=1, m=0) exciton binding energy, E2,0(𝑎20) =  −38 meV, since the 

value E1,0 − E2,0 = −221 meV represents an approximate lower bound on experimental determination of 

the exciton binding energy  [43]. It is also noteworthy that the exciton binding energy calculated within the 

3-layer slab approximation of Hanamura/Hong  [8,40] is 314 meV using the parameters summarized in 

Table S5– significantly larger than obtained with the exact Guseinov multilayer potential employed here.  
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Table S5. Summary of parameters used in exciton binding energy calculation and calculated results for the 

1S and 2S exciton radius and binding energy. Also listed for comparison is the measured 1S exciton binding 

energy from Ref [15]. 

Parameter Value Source 

Inorganic well thickness, 𝑑 0.644nm Ref. [7] 

Organic barrier layer thickness, 𝑏 1.024nm Ref. [7] 

Organic layer relative dielectric permittivity ϵb 2.56 Ref. [36] 

Inorganic layer intrinsic dielectric permittivity ϵ 5.4 This work, Table S3 

Exciton reduced effective mass μ 0.087 Ref. [21] 

Calculated 1S exciton binding energy, −E1,0  

2D exciton radius, 𝑎10 

259 meV 

𝑎10 =  3.3nm 

This work 

Measured 1S exciton binding energy 265 meV Ref.  [21] 

Calculated 2S exciton binding energy, −E2,0  

2D exciton radius, 𝑎20 

38 meV 

𝑎20 =  2.2nm 

This work 

 

Section S6: Origin of the effective crystal field:  Quantum well mixing 
In Section S3. Details of K.P model for free carriers in 2D perovskites we described the modification of the 

conduction band zone-center Bloch functions in terms of a phenomenological effective crystal field model.  

Here we show that the effective crystal field originates from the quantum confinement effect associated 

with strong confinement in the direction perpendicular to the lead-halide inorganic layers, following the 

analysis by Sercel and co-workers, first presented in Ref. [44] in analyzing the effect of quantum-well 

mixing on the conduction band Bloch functions in CsPbBr3 nanoplatelets. 

The conduction bands of perovskite semiconductors can be described using the 6-band Luttinger 

Hamiltonian [45]. In a basis of Bloch functions |𝐽, 𝐽𝑧⟩ written as eigenstates of angular momentum, 𝐽, and 

its projection along the z axis, 𝐽𝑧, written in the order, 

| 3 2⁄ , 3 2⁄ ⟩| 3 2⁄ ,−1 2⁄ ⟩, | 1 2⁄ ,−1 2⁄ ⟩; | 3 2⁄ ,−3 2⁄ ⟩, | 3 2⁄ ,+1 2⁄ ⟩, | 1 2⁄ , 1 2⁄ ⟩, the Luttinger 

Hamiltonian has the form, 

�̃� = �̃�1 + �̃�2  . (S53) 

The first term, �̃�1, is isotropic and is given by, 

�̃�1 =
1

2𝑚0
𝛾1𝐩

2 1̃, 
(S54) 
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where 1̃ represents the 6x6 identity matrix, 𝑚0 is the free electron mass, 𝛾1 is the isotropic Luttinger 

parameter, and 𝐩 =  ℏ𝐤 .   The second term,  �̃�2, can be written, using 𝑇 ≡ 𝛾2 2𝑚0⁄ (𝑝𝑥
2 + 𝑝𝑦

2 − 2𝑝𝑧
2) and 

W± ≡ 𝛾2 2𝑚0⁄ (𝑝𝑥
2 − 𝑝𝑦

2) ± 2𝑖𝛾3𝑝𝑥𝑝𝑦, and 𝑝± ≡ 𝑝𝑥 ± 𝑖 𝑦  , where 𝛾2 and 𝛾3 are the second and third 

Luttinger parameters, as, 

𝐻2 =

(

 
 
 
 
 
 
 
 
 
 
 
 

Δ𝑆𝑂 + 𝑇 −√3𝑊− √6𝑊− 0
−2√3𝛾3
2𝑚0

𝑝−𝑝𝑧
√6𝛾3
2𝑚0

𝑝−𝑝𝑧

−√3𝑊+ Δ𝑆𝑂 − 𝑇 −√2𝑇
2√3𝛾3
2𝑚0

𝑝−𝑝𝑧 0
−3√2𝛾3
2𝑚0

𝑝+𝑝𝑧

√6𝑊+ −√2𝑇 0
√6𝛾3
2𝑚0

𝑝−𝑝𝑧
−3√2𝛾3
2𝑚0

𝑝+𝑝𝑧 0

0
2√3𝛾3
2𝑚0

𝑝+𝑝𝑧
√6𝛾3
2𝑚0

𝑝+𝑝𝑧 Δ𝑆𝑂 + 𝑇 −√3𝑊+ −√6𝑊+

−2√3𝛾3
2𝑚0

𝑝+𝑝𝑧 0
−3√2𝛾3
2𝑚0

𝑝−𝑝𝑧 −√3𝑊− Δ𝑆𝑂 − 𝑇 √2𝑇

√6𝛾3
2𝑚0

𝑝+𝑝𝑧
−3√2𝛾3
2𝑚0

𝑝−𝑝𝑧 0 −√6𝑊− √2𝑇 0
)

 
 
 
 
 
 
 
 
 
 
 
 

, 

(S55) 

 

where Δ𝑆𝑂 is the spin orbit coupling split-off parameter separating the J=3/2 and J=1/2 states at zone center.  

Since the matrix �̃�1 is isotropic it does not affect Bloch function mixing. We focus our attention on the 

second term, �̃�2, which mixes the J=3/2 upper bands with the lower spin-orbit split-off band with J=1/2, 

𝐽𝑧 = ±1/2, which comprises the frontier conduction band. In particular we are interested in the conduction 

bands in a perovskite slab of thickness 𝑑 and lateral area S assumed large, and centered at the coordinate at 

𝑧 = 0.  We adopt a quantum well model as suggested by ab initio studies on 2D HOIPs [17].  Employing 

the effective mass approximation  for the quantum confinement in the z direction and considering only the 

lowest conduction band electron sub-band, the requirement that the wave function vanishes at the slab 

surfaces at 𝑧 = ±𝑑/2 constrains the eigenstates to have the form  [44], 

 

𝜓𝒌(𝒓) = √
2

𝑑
cos

𝜋𝑧

𝑑
 
𝑒𝑖(𝑘𝑥 𝑥+𝑘𝑦𝑦)

√𝑆
   ∑𝐴𝐽,𝐽𝑧
𝐽,𝐽𝑧

|𝐽, 𝐽𝑧⟩ , 

(S56) 

where 𝐴𝐽,𝐽𝑧 are expansion coefficients and |𝐽, 𝐽𝑧⟩ are the full set of zone-center Bloch functions with J = 3/2 

and J =1/2. This expression indicates a change of basis from the Bloch function basis |𝐽, 𝐽𝑧⟩ to the quantum 

well basis |𝐶⟩|𝐽, 𝐽𝑧⟩, where ⟨𝑧|𝐶⟩  =  √
2

𝑑
cos

𝜋𝑧

𝑑
.  We transform to this basis using the transformation  �̃�2

𝐶 =

∫ 𝑑𝑧
𝑑/2

−𝑑/2
𝐶(𝑧)�̃�2 𝐶(𝑧). The effective Hamiltonian can then be written as, 
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�̃�2
𝐶 =

(

 
 
 
 
 

Δ𝑆𝑂 + 𝑇
𝐶 −√3𝑊−

𝐶 √6𝑊−
𝐶 0 0 0

−√3𝑊+
𝐶 Δ𝑆𝑂 − 𝑇

𝐶 −√2𝑇𝐶 0 0 0

√6𝑊+
𝐶 −√2𝑇𝐶 0 0 0 0

0 0 0 Δ𝑆𝑂 + 𝑇
𝐶 −√3𝑊+

𝐶 −√6𝑊+
𝐶

0 0 0 −√3𝑊−
𝐶 Δ𝑆𝑂 − 𝑇

𝐶 √2𝑇𝐶

0 0 0 −√6𝑊−
𝐶 √2𝑇𝐶 0 )

 
 
 
 
 

, 

(S57) 

where Δ𝑆𝑂 is the spin orbit coupling split-off parameter, and, 

𝑇𝐶 ≡
ℏ2

2𝑚0
𝛾2 (𝑘𝑥

2 + 𝑘𝑦
2 − 2(

𝜋

𝑑
)
2

)  ,  

W±
𝐶 ≡

ℏ2

2𝑚0
𝛾2(𝑘𝑥

2 − 𝑘𝑦
2) ± 2𝑖𝛾3𝑘𝑥𝑘𝑦   .  

The transformation leading to Eq. S57 yields the result that all linear order terms involving 𝑝𝑧vanish, so 

that  �̃�2
𝐶 decouples into two 3x3 matrices.  Additionally, �̃�2

𝐶 can be separated into a k-independent piece 

and a k-dependent piece as follows: 

�̃�2
𝐶 = �̃�2

𝐶(0) + �̃�2
𝐶(𝒌)  . (S58) 

Notably, the band edge positions are given solely by the k-independent term  �̃�2
𝐶(0). We re-cast this in 

the following form: 

�̃�2
𝐶(0) =  (

�̃�𝐶
+ 0̃

0̃ �̃�𝐶
+) ,               (S59) 

where 0̃ is a 3x3 matrix of zeroes, and the sub-matrices on the diagonal are given by [44], 

  �̃�𝐶
±  =  

|
3

2
,±
3

2
⟩ |

3

2
,∓
1

2
⟩ |

1

2
, ∓
3

2
⟩

(

 
 
 
 
Δ𝑆𝑂 +

𝛿

3
0 0

0 Δ𝑆𝑂 −
𝛿

3
∓
√2

3
𝛿

0 ∓
√2

3
𝛿 0 )

 
 
 
   , (S60) 

 

where the basis functions are given above the matrix for clarity. Diagonalization of each sub-matrix �̃�𝐶
±  

yields the band edge energies for the upper heavy electron (he) and light-electron (le) band and the lower 

conduction band: 

𝐸
±1/2
ℎ𝑒 = Δ𝑆𝑂 −

δ

3
; (S61) 

𝐸
±1/2
𝑙𝑒 =

1

6
(3Δ𝑆𝑂 − 𝛿 + √9Δ𝑆𝑂

2 − 6δΔ𝑆𝑂 + 9δ
2) ; (S62) 

𝐸
±1/2
𝑐 =

1

6
(3Δ𝑆𝑂 − 𝛿 − √9Δ𝑆𝑂

2 − 6δΔ𝑆𝑂 + 9𝛿
2). (S63) 
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The eigenvectors corresponding to the lowest conduction band, Eq. S63, correspond to the conduction band 

Bloch functions given in Eqs. S10-11. This is the key result:  The parameter 𝛿 is here identified as the 

effective crystal field introduced phenomenologically in Section 2.3.  It is given by [44], 

𝛿 = − 6
ℏ2

2𝑚0
𝛾2 (

𝜋

𝑑
)
2

 . (S64) 

By virtue of the quantum well mixing effect the effective crystal field is negative for positive 𝛾2. We can 

estimate its magnitude given the thickness of the inorganic layer, d,  and the value of the Luttinger parameter 

𝛾2, which can be estimated from the bandgap, 𝐸𝑔, and the Kane energy, 𝐸𝑝  =  2𝑃𝐾
2/𝑚0, where 𝑃𝐾  =

−i ⟨S|p̂z|Z⟩ is the Kane momentum matrix element.  This estimation is made using the expressions in 

Ref. [46,47], neglecting remote band contributions: 

𝛾2 ≅
𝐸𝑝
6𝐸𝑔

 . (S65) 

In this expression we determine 𝐸𝑔  from the measured exciton transition energy, ℏ𝜔, as 𝐸𝑔 =  ℏ𝜔 + B1,0, 

where  B1,0  = −E1,0(𝑎10) is the binding energy of the lowest exciton, shown in Table S5. We determine 

the Kane energy from the oscillator strength per unit area measured for cleaved crystals reported in Table 

1 of the main text, rather than from effective masses which are directly influenced by remote band effects. 

Using the results of Section S4, Eq. S35 and Eq S39 we solve for the Kane energy as [48], 

𝐸𝑝  =   ℏ𝜔 
𝑓∥
𝑒𝑥𝑐

𝑆

1

|𝜑10(0)|
2

1

𝑐𝑜𝑠2𝜃
. (S66) 

In this expression 𝑓∥
𝑒𝑥𝑐 𝑆⁄  is the in-plane oscillator strength of the exciton, which is unaffected by the 

dielectric discontinuity in the 2D HOIP structure as described in Sec. S5. The term |𝜑10(0)|
2 is the 2D 

exciton relative wavefunction evaluated at contact; from Eq S48 we evaluate this as |𝜑10(0)|
2 =

 8 (𝜋𝑎10
2 )⁄ . Finally, the phase angle  𝜃 reflects the Bloch function anisotropy in Eqs. 10-11; we determine 

this using Eq. S39 using the intrinsic ratio of the out-of-plane to the in-plane oscillator strength of the 

exciton as determined from the measured ratio via Eq. S43 in Section S5: 

tan𝜃 =  √
1

2
(
𝑓⊥
𝑒𝑥𝑐

𝑓∥
𝑒𝑥𝑐)

𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐

.   

(S67) 

 

Using the numerical values for ℏ𝜔 and the oscillator strength per unit area for polarization in-plane and 

out-of-plane tabulated in  Table 1, the measured intrinsic ratio (𝑓⊥
𝑒𝑥𝑐/𝑓∥

𝑒𝑥𝑐)𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  = 0.166 from Table 

S4, with the exciton radius 𝑎10 = 3.3 nm from Table S5, we find 𝐸𝑝  =  3.98 eV, which compares 

favorably to the value 𝐸𝑝  =  5.5 eV found for 4F-PEPI ([pFC6H5C2H4NH3]2PbI4) in Ref. [22].  Using the 

calculated 𝐸𝑝, we calculate 𝛾2 = 0.25, which leads to an effective crystal field 𝛿 = −1.36 eV using Eq. 

S64 with d = 0.644 nm. This is close to the corresponding value calculated using DFT for 4F-PEPI in 
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Ref. [22] , namely, 𝛿 = −1 eV, where the negative sign is determined from analysis of the conduction band 

splitting in the absence of spin-orbit coupling in Ref. [22].   

Given the effective crystal field splitting, the value of the intrinsic phase angle can be determined using Eq. 

S11 given the knowledge of the spin-orbit coupling parameter, Δ𝑆𝑂; however, since this parameter is not 

known a priori, we adopt the converse approach of determining  Δ𝑆𝑂 given the calculated crystal field and 

the measured oscillator strength ratio. Using the values summarized in Table S6 we obtain Δ𝑆𝑂 = 1.17eV. 

As a check of the calculated value, we use Eq.s S61-63 to compute the average splitting between the band-

edge energies of the heavy- and light-electron bands and the lowest conduction band: 

Δ̅  ≡ �̅�𝑢𝑝𝑝𝑒𝑟 − 𝐸±1/2
𝑐 =

1

4
(𝛿 + Δ + √9δ2 − 6δΔ + 9Δ2). (S68) 

Using the parameters above the average conduction band splitting at the Γ point splitting evaluates to Δ̅  =

 1.50 eV. For comparison the energy difference between the lowest conduction band and the average Γ 

point energy of the second and third conduction bands calculated using DFT-HSE+SOC (for which the 

band structure is shown in Figure S4) is Δ̅  =1.53 eV.  Conversely, using Δ̅  =1.53 eV as determined using 

DFT-HSE+SOC, the spin-orbit coupling parameter evaluates to Δ𝑆𝑂 = 1.20 eV, which matches the value 

Δ𝑆𝑂 = 1.2 reported for 4F-PEPI in Ref. [22].  

 

 

Table S6. Summary of parameters relevant to quantum well mixing model for PEPI. 
Parameter Value Source 

Measured intrinsic exciton anisotropy accounting for 

dielectric anisotropy(𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  
0.166 Table S4 

Bloch function phase angle, sin 𝜃 from 

measured(𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  

0.277 Eq. S39 

Band gap 𝐸𝑔 2.644 eV Table 1 and Table S5 

Kane energy, 𝐸𝑝 3.98 eV Eq. S66-S67 and 

Table 1 

Luttinger parameter 𝛾2 0.25 Eq. S65 

Effective crystal field, 𝛿 1.36 eV Eq. 64 

Spin-orbit coupling parameter, Δ𝑆𝑂 calculated from 

measured (𝑓𝑧
𝑒𝑥𝑐 𝑓𝑥

𝑒𝑥𝑐⁄ )𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐  and effective crystal field, 

𝛿 

1.17 eV Eq. S11 with 

measured  sin 𝜃 

Spin-orbit coupling parameter, Δ𝑆𝑂 calculated from 

average conduction band splitting Δ̅  = 1.53eV from 

DFT-HSE+SOC and effective crystal field, 𝛿 

1.20 eV Eq. S68 
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