Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021

Supporting Information

First-principles calculations of strain engineering in NaYF₄-based nanocrystals with hydroxyl impurities

Xian Qin^{a,*}, Xiaogang Liu^a

^aDepartment of Chemistry, National University of Singapore, Singapore 117543, Singapore

*E-mail: <u>chmqinx@nus.edu.sg</u>

Determination of the chemical potential range for each species. Under thermal equilibrium growth conditions, stable cubic-phase NaYF₄ can form when the chemical potentials of each species follow

$$\Delta\mu_{Na} + \Delta\mu_{Y} + 4\Delta\mu_{F} = \Delta H^{f} (NaYF_{4})$$
(S1)

where $\Delta H^{f}(NaYF_{4})$ is the formation enthalpy of cubic NaYF₄ obtained from first-principles calculations. $\Delta \mu_{Na}$, $\Delta \mu_{Y}$, and $\Delta \mu_{F}$ are the relative chemical potentials of Na, Y, and F, referenced to the energy per atom of sodium bulk, yttrium bulk, and a gas-phase fluorine diatomic molecule, respectively. These relative chemical potentials can be written as

$$\Delta\mu_{Na} = \mu_{Na} - \mu_{Na}^{Bulk} \tag{S2}$$

$$\Delta\mu_Y = \mu_Y - \mu_Y^{Bulk} \tag{S3}$$

$$\Delta\mu_F = \mu_F - \mu_F^{Gas} \tag{S4}$$

To avoid the formation of the aforementioned elemental substances, relative chemical potentials should follow

$$\Delta \mu_{Na} \le 0 \tag{S5}$$

$$\Delta \mu_Y \le 0 \tag{S6}$$

$$\Delta \mu_F \le 0 \tag{S7}$$

where $\Delta \mu$ = 0 denotes Na-rich, Y-rich, or F-rich conditions.

To avoid the precipitation of secondary phases of fluoride-based compounds, relative chemical potentials should follow

$$\Delta\mu_{Na} + \Delta\mu_F \le \Delta H^f(NaF) \tag{S8}$$

$$\Delta \mu_Y + 3\Delta \mu_F \le \Delta H^f (YF_3) \tag{S9}$$

With DFT-calculated energies of each atom species in their bulk/gas phase and the formation enthalpy of each inorganic compound, the stability diagram of cubic NaYF₄ was obtained (**Fig. 1**).

Additionally, the relative chemical potential of OH species was referenced to the energy of a gas-phase, isolated OH⁻ ion, which can be written as

$$\Delta\mu_{OH} = \mu_{OH} - \mu_{OH}^{Gas} \tag{S10}$$

Similarly, to avoid the formation of the elemental substance and the corresponding second phases, the relative chemical potential of OH species was limited by

$$\Delta \mu_{OH} \le 0 \tag{S11}$$

$$\Delta\mu_{Na} + \Delta\mu_{OH} \le \Delta H^f (NaOH) \tag{S12}$$

$$\Delta \mu_Y + 3\Delta \mu_{0H} \le \Delta H^f (Y(OH)_3) \tag{S13}$$

Table S1 Calculated formation enthalpy of each inorganic compound. Note that disordered cubic NaYF₄ crystal was converted to ordered tetragonal NaYF₄ crystal for DFT calculations.

Compound	Calculated Δ Hf (eV/chemical formula)		
NaYF ₄ (I41/amd)	-22.862		
NaF (Fm3m)	-5.637		
YF₃ (Pnma)	-17.017		
NaOH (P2 ₁)	-4.536		
Y(OH) ₃ (P6 ₃ /m)	-15.324		

Table S2 Bond length between F^{-}/OH^{-} and its first neighboring ions in pristine/OH-incorporated unstrained cubic NaYF₄. The number assigned to each atom is illustrated in **Figs. 2a** and **b**.

Pristine lattice		OH-incorporated lattice	
Bond name	Bond length (Å)	Bond name	Bond length (Å)
F ₀ -Y ₁	2.31	0-Y ₁	2.29
F ₀ -Y ₂	2.31	0-Y ₂	2.29
F ₀ -Na ₁	2.44	O-Na ₁	2.59
F ₀ –Na ₂	2.44	O–Na ₂	2.59
F ₀ -F ₁	2.53	0-F ₁	2.57
F ₀ -F ₂	2.72	O-F ₂	2.76
F ₀ -F ₃	2.97	H–F ₃	1.81
F ₀ -F ₄	2.72	O-F ₄	2.76
F ₀ -F ₅	2.75	O-F ₅	2.81
F ₀ -F ₆	2.75	O-F ₆	2.81
		O-H	0.99