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Table S1. Physical properties used to model κL in GeTe based on various phonon scattering 
processes.

Parameters Values
vL, m/s 3410
vT, m/s 1995
vm, m/s 2210

Atomic mass, kg 1.66 x 1025

Sample density, g/cm3 6.14
Debye T, K 122

γ 1.45
Poisson’s ratio 0.24

Bulk modulus, GPa 39.9
Young’s Modulus, GPa 62.2
Shear Modulus, GPa 25.5

Grain size, um 42

Figure S1. Grain size distribution of EBSD mapping. 
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Figure S2. Lorenz number from Single Parabolic Band for all samples
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Figure S3. Electronic thermal conductivity for all samples
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Figure S4. Phonon relaxation time as a function of frequency for various scattering processes.
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Figure S5. SEM EDS of Ge0.9Sb0.1Te.

Figure S6. TEM HAADF (High angle annular dark field) image and the corresponding EDS 
showing finely (nm sized) dispersed regions of Nb5Ge3 in the GeTe-Nb5Ge3 doped sample.
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Figure S7. (a) Temperature dependence of magnetization for both zero field cooled and field cooled processes. (b) 
Magnetization hysteresis measured at superconducting state (5 K).  

(a) (b)

Figure S8. (a) Electronic band structure of rhombohedral GeTe and (b) cubic Ge0.9Sb0.1Te.  
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Figure S9. Resistivity vs temperature data for Nb5Ge3. 

Weighted Mobility 𝜇𝑊

To understand the nature of transport in more detail, we compute the  from electrical 
𝜎𝐸0

conductivity σ, which can be expressed as: 

                                                                                             (1)
𝜎 = 𝜎𝐸0

ln (1 + 𝑒𝜂)

Essentially, is a convenient expression of electrical conductivity that is independent of 
𝜎𝐸0

carrier concentration. This is especially useful in our case since the carrier concentration values 

obtained via Hall measurements may not be accurate due to the non-linearity of the Hall voltage 

versus magnetic field. (i.e. the Hall carrier concentration is typically taken as the linear slope of 

Hall voltage versus magnetic field, non-linearity in Hall voltage versus magnetic field makes data 

interpretation inaccurate). Large  can be associated with good crystalline quality and vice versa.  
𝜎𝐸0

Furthermore, the carrier mobility-equivalent for  can be expressed as weighted-mobility . The 
𝜎𝐸0 𝜇𝑊

relation between  and  can be expressed as:
𝜎𝐸0  𝜇𝑊



                                              =                                         (2)
𝜎𝐸0

𝑒(2𝑚𝑒𝑘𝐵𝑇)3/2

3𝜋2ℏ3
𝜇𝑊

                                                                                      (3)
𝜇𝑊 =  𝜇0 (𝑚 ∗

𝐷𝑂𝑆

𝑚𝑒 )3/2

The main advantage of using weighted-mobility over inaccurately determined Hall mobility 

lies in the fact that weighted-mobility takes into account the (density of states effective mass). 𝑚 ∗
𝐷𝑂𝑆 

Since the density of states effective mass provides a direct correlation to the Seebeck coefficient, 

the inverse correlation between electrical conductivity and Seebeck coefficient can be clearly 

accounted for by looking at the weighted mobility. Hence, it can be used as a robust indication of 

the thermoelectric power factor. It is important to note that while weighted mobility share some 

similarities with Hall mobility, their magnitude generally differs, especially for compounds with 

high band-degeneracy (high . This comes from the fact that weighted mobility has a 3/2 𝑚 ∗
𝐷𝑂𝑆) 𝑚 ∗

𝐷𝑂𝑆

dependence whereas Hall mobility only depends on (intrinsic mobility) as well as the reduced 𝜇0

Fermi level and scattering mechanism. 

Lastly, the quality factor B can be evaluated from  based on the following:
𝜎𝐸0

                                                      (4)
𝐵 = (𝑘𝐵

𝑒 )2 𝑇
𝑘𝐿

𝜎𝐸0

It is evident from equation 5 that in order to enhance the quality factor,  must be 
𝜎𝐸0

enhanced, either via band convergence, resonant doping, energy filtering, or deformation potential 

engineering to increase . Alternatively, can be reduced via point defects, strain, dislocation, 𝑚 ∗
𝐷𝑂𝑆 𝑘𝐿 

or stacking faults. 



Lorenz Number

The Lorenz number used in this work is calculated from the semiclassical Boltzmann 

Transport Equations under single parabolic band assumption: 

                                                     

𝐿 = (𝑘𝐵

𝑒 )2[(𝑟 +
7
2)𝐹𝑟 + 1.5(𝜂)

(𝑟 +
3
2)𝐹𝑟 + 0.5(𝜂)

‒ ((𝑟 +
5
2)𝐹𝑟 + 1.5(𝜂)

(𝑟 +
3
2)𝐹𝑟 + 0.5(𝜂))2]

(5)

Where r represents the carrier scattering exponent, set at -0.5 for acoustic phonon 

scattering.

Simplified Debye-Callaway model for lattice thermal conductivity

In order to model the lattice thermal conductivity, Debye frequency was first determined from:

                                                                              (6)
𝜔𝑚𝑎𝑥 = 𝜔𝐷 =  (6𝜋2

𝑉 )1/3𝑣𝑚

Where V is the atomic volume and vm was obtained from equation (4). The acoustic branch 

maximum frequency can be expressed as: 

                                                                                                          (7)
𝜔𝑎 =  

𝜔𝐷

𝑁1/3

Where N is the number of atoms per unit cell. 

The Debye temperature  can then be expressed as:𝜃𝐷



                                                          =                                             (8)ℏ𝜔𝐷 𝑘𝐵𝜃𝐷

Subsequently, the phonon relaxation time τ(ω) can be calculated by accounting for contribution 

from Umklapp, grain boundaries, and point defects as following:

                                                                                (9)
𝜏 ‒ 1

𝑈 =  
2

(6𝜋2)1/3

𝑘𝐵𝑉1/3𝛾2𝜔2𝑇

𝑀̅𝑣3

                                                                                                            (10)
𝜏 ‒ 1

𝐵 =  
𝑣
𝑑

                                             (11)
𝜏 ‒ 1

𝑃𝐷 =  
𝑉𝜔4

4𝜋𝑣3 (∑
𝑖

𝑓𝑖(1 ‒
𝑚𝑖

𝑚̅ )2 +  ∑
𝑖

𝑓𝑖(1 ‒
𝑟𝑖

𝑟̅ )2 )
In our case, the spectral heat capacity  can be expressed as:                                                             𝐶𝑠(𝜔)

                                       (12)
                                                                  𝐶𝑠(𝜔) =  

3𝑘𝐵𝜔2

2𝜋2𝑣3

By assuming constant group velocity (sound velocity), we can express the spectral thermal 

conductivity  as:𝜅𝑠(𝜔)

                                                                               (13)     𝜅𝑠(𝜔) =  𝐶𝑠(𝜔)𝑣2𝜏(𝜔)

Finally, the lattice thermal conductivity can be obtained by integrating the spectral thermal 

conductivity over the entire frequency range up to :                                                                           𝜔𝑎

                              (14)
                                              𝜅𝐿 =

1
3

 

𝜔𝑚𝑎𝑥

∫
0

𝐶𝑠(𝜔)𝑣2𝜏(𝜔)𝑑𝜔



In our experiments, we obtained both elastic constant (E) from nanoindentation as well as 

longitudinal sound velocity (vL) from ultrasonic measurements. In order to obtain other elastic 

properties, we made use of the following equations:

                                                          𝐵 =
𝐸

3(1 ‒ 2𝑣𝑝)
                                              (15)

Where B = Bulk modulus; vp = Poisson ratio

Both sides of the above equation can be expressed in terms of vL and vT (longitudinal and 

transverse sound velocity, respectively) as follows:

       
         𝐵 = 𝜌 (𝑣2

𝐿 ‒  
4
3

𝑣2
𝑇)                                              (16)

    

        𝑣𝑝 =

1 ‒ 2(
𝑣𝑇

𝑣𝐿
)2

2 ‒ 2(
𝑣𝑇

𝑣𝐿
)2

                                                           (17)

Where ρ = density

The transverse sound velocity vT can then be calculated by substituting equation (2) and 

(3) into equation (1) and solving for vT. Subsequently, the average sound velocity, vm can be 

determined via:

                     
𝑣𝑚 = (1

3[ 1

𝑣3
𝐿

+  
2

𝑣3
𝑇

]) ‒
1
3                                              (18)

Shear modulus μ can be obtained from:



                         𝜇 = 𝜌𝑣2
𝑇                                                          (19)

In addition, after obtaining the poisson ratio vp from equation (3), the Gruneisen parameter 

γ can be determined by: 

                                                     
𝛾 =

3
2( 1 + 𝑣𝑝

2 ‒ 3𝑣𝑝
)                                                    (20)

Hall Concentration and Mobility

Table S2. Hall concentration and Hall mobility of all samples.

Composition nH (cm-3) μH (cm2/Vs)

GeTe 8.1 x 1020 55.1

GeTe – 0.5% Nb5Ge3 7.5 x 1020 38.0

Ge0.90Sb0.10Te 1.9 x 1020 33.9

Ge0.90Sb0.10Te – 1 % Nb5Ge3 1.7 x 1020 38.1

Ge0.90Sb0.10Te – 2 % Nb5Ge3 2.0 x 1020 34.2

Ge0.90Sb0.10Te – 3 % Nb5Ge3 1.9 x 1020 28.7

Table S3. Lattice parameters of Pristine GeTe compared to doped samples. No drastic change in 
lattice parameters can be observed. 

Composition a (Å) b (Å) c (Å)   

GeTe 4.17 ± 
0.00009

4.17 ± 
0.00009

10.65 ± 
0.00026 90 90 120

GeTe – 0.5% 
Nb5Ge3

4.17 ± 
0.00012

4.17 ± 
0.00012

10.66 ± 
0.00033 90 90 120

Ge0.90Sb0.10Te 4.19 ± 
0.00017

4.19 ± 
0.00017

10.41 ± 
0.00046 90 90 120

Ge0.90Sb0.10Te – 1 
% Nb5Ge3

4.19 ± 
0.00014

4.17 ± 
0.00014

10.44 ± 
0.00031 90 90 120



Ge0.90Sb0.10Te – 2 
% Nb5Ge3

4.18 ± 
0.00011

4.18 ± 
0.00011

10.46 ± 
0.00027 90 90 120

Ge0.90Sb0.10Te – 3 
% Nb5Ge3

4.17 ± 
0.00012

4.17 ± 
0.00012

10.41 ± 
0.00038 90 90 120


