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1 Analytical framework derivation

With the final objective of obtaining an analytical expression for the different contributions

to the total thermo-osmotic response, we developed a general model to include the additional

contributions to the enthalpy excess density δh related to the solvent and the ions, along

with the electrostatic enthalpy of ions δhel considered by the standard approach.S1,S2 All

the quantities were computed within the Poisson-Boltzmann framework. Details on such

framework and its range of validity are discussed in Ref. S3.

1.1 Hydrodynamic boundary condition and osmotic velocity pro-

file

Figure S1: Schematics of the ef-
fective slip length beff as a function
of the slip length b and the shear
plane position zs.

The standard no-slip boundary condition (BC), which

supposes that the fluid velocity vanishes when in contact

to the wall, needs to be refined at the nanoscale. Two

different situations can occur. First, we can consider

the presence of a liquid stagnant layer close to the wall

(Fig. S1, beff = b−zs < 0), implying a vanishing velocity

profile inside the channel. The typical size of the stag-

nant layer, due to the layering of the fluid close to the

wall, is of order of one molecular diameter,S4 σ ∼ 2.75 Å

for water. In this case, −beff identifies with the size of
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the stagnant layer present at the liquid-solid interface,

where the liquid velocity vanishes.

Second, we can consider an interfacial velocity jump (Fig. S1 with beff = b− zs > 0), also

known as slip velocity vs, described via the partial slip BC:

vs = b
∂v

∂z

∣∣∣∣
z=zs

, (1)

where zs corresponds to the shear plane position and b is the slip length (with b = η/λ,

η being the shear viscosity and λ the liquid-solid friction coefficient). This BC becomes

critical to take it into account at the nano- and micro-metric scales, due to the typical order

of magnitude of the slip length, b ∼ 100 − 102 nm.S5–S7

In terms of wettability, we can expect the presence of a stagnant layer in the most

hydrophilic systems, where the liquid molecules have more tendency to accumulate close

to the wall, while a slipping system will correspond to hydrophobic interfaces, with small

liquid-solid friction coefficient due to the weaker interactions with the wall.

The appropriate boundary conditions together with the Stokes equation

−η∆v = −∇p+ fext, (2)

where p is the pressure and fext is an applied external force per unit volume, allow us to

derive a general expression for the osmotic velocity profile close to a planar wall as a function

of the force density profile in the interaction layer. Let us first simplify Eq. (2) by considering

f = −∇p+fext the force density generated by the thermodynamic gradients in the interfacial

layer. Integrating Stokes Eq. (2), in the lubrication limit and supposing force and therefore

velocity derivative vanish far from the wall, we obtain:

−η∂vx(z)

∂z
=

∫ z

+∞
f(z′) dz′. (3)
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Integrating again between the position z0 (with z0 = 0 in the slip case, and z0 = −beff in the

stagnant layer case; see Fig. S1) and z, we obtain:

vx(z)− vx(z0) =

∫ z

z0

dz′
∫ ∞
z′

1

η
f(z′′) dz′′. (4)

We can replace vx(z0) by the relevant BC from Eq. (1) (with b = 0 in the stagnant layer

situation) obtaining:

vx(z) =
1

η

[∫ z

z0

dz′
∫ ∞
z′

f(z′′) dz′′ + (beff + z0)

∫ ∞
z0

f(z) dz

]
; (5)

which reduces, integrating by parts and taking the velocity limit far from the wall, to:

v∞osm = lim
z→∞

vx(z) =
1

η

∫ ∞
z0

(z + beff) f(z) dz. (6)

The osmotic velocity profile, given by the general expression Eq. (5) far from the wall, is of

special interest when computing the different coefficients of the response matrix.

In the case of thermo-osmosis, for instance, it is straightforward to obtain the thermo-

osmotic response coefficient Mtosm, defined from the relation: vosm = Mto(−∇T/T ).S8 In this

case, the force density driving the flow is the thermodynamic force f = −T∇(µ/T ) with µ

the chemical potential. Taking into account the Gibbs-Helmholtz equation, d(µ/T ) /dT =

δh/T 2,S9 we obtain that

f(z) = −δh(z)
∇T
T
. (7)

Substituting f in Eq. (6) we obtain:

v∞osm = −∇T/T
η

∫ ∞
z0

δh(z)(z + beff)dz. (8)

Finally, the thermo-osmotic response coefficient Mto = vosm/(−∇T/T ) is given by the general
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expression:

Mto =
1

η

∫ ∞
z0

δh(z)(z + beff)dz. (9)

1.2 Enthalpy excess density

The enthalpy excess density δh is a fundamental quantity in Eq. (9). Here we introduce some

general concepts related to its classical description,S1,S2 given only by ionic electrostatic

interactions, together with some additional contributions that we will account for in the

general model we propose to describe the different interactions that play a role in the enthalpy

of an aqueous electrolyte.

1.2.1 Notations and characteristic lengths

Notations –

• inverse thermal energy β = 1/(kBT ), with kB the Boltzmann constant amd T the

temperature

• absolute ionic charge q = Ze with e the elementary charged and Z the ion valence

• electrostatic potential V

• reduced potential φ = βqV

• their value at the wall Vs and φs

• ion densities n±

• charge density ρe

• solvent dielectric permittivity ε

• salt concentration ns = n+ = n− in the bulk/reservoirs

• surface charge density Σ
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Characteristic lengths –

Solvent permittivity ε: Bjerrum length `B – The Bjerrum length is the distance at which

the electrostatic interaction energy between two ions is equal to the thermal energy kBT .

`B =
βq2

4πε
⇔ ε =

βq2

4π`B

(10)

For a monovalent salt in water at room temperature, `B ∼ 0.7 nm.

Bulk salt concentration n0: Debye length λD – The Debye length is the range of the

exponential screening of the electric field in an electrolyte.

λD =
1√

8π`Bn0

⇔ n0 =
1

8π`Bλ2
D

(11)

For a monovalent salt in water at room temperature, λD ∼ 0.3 nm/
√
n0(mol/L).

Surface charge density Σ: Gouy-Chapman length `GC – The Gouy-Chapman length is the

distance at which the electrostatic interaction energy between an ion and a charged surface

is comparable to the thermal energy kBT .

`GC =
q

2π`B|Σ|
⇔ Σ = sgn(Σ)

q

2π`B`GC

(12)

For monovalent ions in water at room temperature, `GC ∼ 36 nm/|Σ|(mC/m2).

In the following, it will appear that many quantities can be expressed as a function of the

ratio λD/`GC, which is proportional to the absolute value of the surface charge, and inversely

proportional to the square root of the bulk salt concentration:

λD

`GC

= 2π`BλD
|Σ|
q

=
|Σ|/q
√
n0

√
π`B

2
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1.2.2 General remarks

In the case of aqueous electrolytes, originally, Derjaguin et al. developed a model for the

thermo-osmotic coefficientS1,S2 as in Eq. (9) without the slip term, and only considering the

electrostatic enthalpy of the ions δhel(z) = ρe(z)V (z)+p(z). By taking into account Poisson’s

equationS3 and considering mechanical equilibrium along the z direction
(

dp
dz

= −ρe
dV
dz

)
, we

obtain an expression of δhel as a function of the electric potential:

δhel(z) = −εV (z)
d2V

dz2
+
ε

2

(
dV

dz

)2

. (13)

Just focusing on this classical theory,S2 which only considers the electrostatic interactions

between ions (δh ' δhel), substituting Eq. (13) in Eq. (9), we can solve the integral analyt-

ically in the slip situation, obtaining the electrostatic constribution to the thermo-osmotic

response as a function of the ratio x = λD/`GC (see Section 1.2.1):

M el
to =

1

2π`Bηβ

{
−3 ln

(
1− γ2

)
− asinh2(x) +

beff

λD

[
3x|γ| − 2x asinh(x)

]}
, (14)

with

γ = tanh

(
φs

4

)
=

sgn(Σ)

x

(
−1 +

√
1 + x2

)
. (15)

This expression can be simplified in the Debye-Hückel regime, which was the one considered

by Derjaguin,S1,S2 then x� 1:

M el,DH
to = − x2

8π`Bηβ

(
1 + 2

beff

λD

)
, (16)

and thus scaling as Σ2 in this regime. A different scaling with x is found for high surface

charges, i.e. when x� 1, when the contribution is given by the expression:

M el,x�1
to =

1

2π`Bηβ

{
3 ln
(x

2

)
− ln2(2x) +

beff

λD

x

[
3− 2 ln(2x)

]}
. (17)
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It is interesting to note that none of these expressions depend on the sign of the surface

charge: Mto is always negative.

Although the model proposed by Derjaguin et al. is useful to quantitatively predict some

Mto experimental orders of magnitude,S9 it fails to describe the amplitude of the responses

predicted in the literature,S8,S10–S12 the thermo-osmotic response reported for weakly charged

membranes,S13 as well as the experimental discrepancies observed in Mto sign.S9,S14–S16 Al-

though electrostatic ionic interactions are for sure an important ingredient controlling the

thermodynamical processes of a dissolved salt in a charged channel, other interactions dis-

carded by the classical model may also be critical to describe thermo-osmosis, such as the

liquid-solid interactions (i.e. the wetting properties), as well as the ion specificityS17.

Generally, the atomic enthalpy excess density for an element i can be defined as:

δhi(z) = [δui(z) + δpi(z)]ni(z), (18)

where δA(z) = A(z) − Abulk; with Abulk the bulk value of the physical property A, ui the

energy per atom, pi the stress per atom 1, and ni the atomic number density profile. When

working at constant temperature, the kinetic energy per atom uk,i is proportional to kBT for

all z, so δuk,i = 0 and δui = δup,i with up,i the potential energy per atom.

Equation (18) can be easily extended to the case of molecular fluids as the sum of the

different atomic contributions. Therefore, in the case of water:

δhwat(z) = δhO(z) + δhH(z). (19)

In this case δhwat does not have a simple analytical form and, due to its strong dependence

on the wetting properties,S8,S10 it has to be computed numerically from simulations for a

given wall type.

Note that other enthalpy excess density contributions could be considered. Such is the

1A practical difficulty with measuring this term will be discussed in Section 3.2.
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case of the one associated to the water molecules dipole moment in the EDL given by the

expression:

δhdp(z) = −〈µ〉 (z)nO(z)E(z), (20)

with nO the number density of the oxygen atoms, E = −dV
dz

the electrostatic field, and 〈µ〉

the average dipole moment in the direction of the field. 〈µ〉 can be computed from Boltzmann

statistics, by taking into account that 〈µ〉 (z) = µ 〈cos θ〉 (z), with 〈cos θ〉 the average dipole

moment orientation and µ the dipole moment of the solvent, µ = 1.85 D for water. With

that regard, denoting PB the probability that the molecule will have the angle θ, then

PB =
eα cos θ∫

dΩ eα cos θ
, (21)

where Ω is the solid angle and α = βµE. Therefore,

〈µ〉 =

∫
dΩµPB cos θ =

µ
∫ π

0
eα cos θ cos θ sin θ dθ∫ π
0
eα cos θ sin θ dθ

= µ

(
cothα− 1

α

)
. (22)

By linearizing this expression when µE � kBT and substituting in Eq. (20) we finally obtain:

δhdp(z) = − 1

3β

(
µ

q

)2

nO(z)

(
dφ

dz

)2

, (23)

where φ is the reduced potential (see Section 1.2.1). We can obtain nO from molecular dy-

namics simulations and φ(z) solving the Poisson-Boltzmann equationS3 for the corresponding

geometry.

One of the objectives of the present work is to introduce a general model that accounts

for the different interactions taking place in a liquid electrolyte, namely the solute and

solvent electrostatic interactions (in the presence of a charged surface) and purely neutral

interactions (due to the solid wetting properties).
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1.2.3 Proposed model

The main idea in the model we propose here is, following the ideas of Ref. S18, to include

the additional contributions to δh related to the solvent (water in the present work) and the

ions, along with the electrostatic enthalpy of ions δhel considered by the standard approach.

The water contribution in the case of a neutral surface (Σ = 0), will be given by the

sum of the oxygen and hydrogen atomic enthalpies, which can be directly determined from

equilibrium MD simulations following Eqs. (18) and (19), so δh0
wat = δh0

O + δh0
H. In the case

of a charged surface Σ, we should also account for the dipole moment contribution, δhΣ
dp

from Eq. (23), writing the total water enthalpy contribution as δh0
wat + δhΣ

dp.

Analogously, the ions contribution for a neutral surface will write δh0
ions = δh0

+ + δh0
−,

where

δh0
± =

(
δu0
± + δp0

±
)
n0
±, (24)

with the ions distribution given by an exponential of the potential energy variation; for

symmetric salts depleted from the wall:

n0
± = n0

s exp
(
−βδu0

±
)
; (25)

n0
± can also be determined from equilibrium MD simulations at a reference bulk concentration

n0
s .

We can extend this description to a charged surface, by including the potential (described

within the Poisson-Boltzmann framework) in Eq. (24):

δhΣ
ions =

(
δu0

+ + δp0
+ + qV

)
nΣ

+ +
(
δu0
− + δp0

− − qV
)
nΣ
−; (26)

where the ionic concentrations will be given by the Boltzmann distribution:

nΣ
± = ns exp

[
−β
(
δu0
± ± qV

)]
= n± exp

(
−βδu0

±
)
, (27)
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with n± the ion distributions within the Poisson-Boltzmann framework, given by the Boltz-

mann equation.S3 Rearranging terms in Eq. (26) we obtain:

δhΣ
ions =

δh0
+

n0
s

n+ +
δh0
−

n0
s

n− + q
(
nΣ

+ − nΣ
−
)
V

= δhΣ
sol + δhΣ

mix + δhΣ
ES,

(28)

from where we defined the solvation enthalpy as the enthalpy contribution from the first two

terms:

δhΣ
sol =

δh0
+

n0
s

n+ +
δh0
−

n0
s

n−. (29)

The potential term in Eq. (28) is in turn decomposed into a purely electrostatic contribution:

δhΣ
ES = q (n+ − n−)V, (30)

and a mixed term

δhΣ
mix(z) = q

[
n+

(
n0

+

n0
s

− 1

)
− n−

(
n0
−

n0
s

− 1

)]
V, (31)

which acts as a compensation term for δhΣ
ES in the region where the ions are depleted from

the wall. Indeed, when the salts are depleted from the wall (typically symmetric salts), their

density profile for neutral walls can be approximated by a step function with n0
± = n0

s in

bulk and n0
± = 0 close to the wall, so δhΣ

mix = 0 in bulk and δhΣ
mix = −δhΣ

ES at the interface.

A full picture will be completed by considering the electrostatic pressure contribution

δpΣ
ES = ε

2

(
dV
dz

)2
which, together with δhΣ

ES, form the classical electrostatic term from Eq. (13),

δhel = δhΣ
ES+δpΣ

ES. In conclusion, dropping the enthalpies super indexes related to the surface

charge in order to light notation, the total enthalpy excess density writes:

δh(z) = δhwat(z) + δhdp(z) + δhsol(z) + δhmix(z) + δhel(z). (32)
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Finally, we denote δh∗el ≈ δhmix + δhel, with

δh∗el =


δhel for z > d`

0 for z ≤ d`

, (33)

where d` corresponds to the characteristic length corresponding to the depletion of the ions

from the wall. Therefore the total enthalpy can be expressed as:

δh(z) = δhwat(z) + δhsol(z) + δhdp(z) + δh∗el(z). (34)

In this equation we can distinguish a contribution related to the solvent (water in this work)

δhwat, another one related to the ion solvation δhsol, and two electrostatic contributions, δhdp

and δh∗el, related to the solvent and the ions electrostatic interactions respectively.

2 Molecular dynamics simulations details

We used the LAMMPS packageS19 to determine the enthalpy excess density profiles from

equilibrium molecular dynamics (EMD) simulations of an aqueous electrolyte constituted by

2080 water molecules, simulated with the SPC/E water model,S20 and 80 ions (40 anions and

40 cations) of three different salt types, NaCl, KCl and NaI, such as the bulk salt concentra-

tion was ns ∼ 1 M, following Ref. S21. In this paper, the authors performed MD simulations

to study electro-osmotic flow in hydrophobic channels and proposed a theoretical model, ex-

tended in Ref. S17, in good agreement with their simulation results. Therefore, we intended

to reproduce their system in order to study thermo-osmotic flows. All atomic interactions

were modeled with a Lennard-Jones potential characterized by an interaction energy εij and

size σij. The system parameters were the ones indicated in Ref. S21, namely the water-

ions interactions were taken fromS22 except for the biggest ion, I−, for which we considered

σII = 6.00 Å.S17,S21 We imposed periodic boundary conditions in the x and y directions par-
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allel to the walls with lateral sizes Lx = 48.21 Å and Ly = 32.14 Å. The structure of the walls

consisted in three atomic layers structured as a face centered cubic crystal exhibiting a (001)

face to the fluid, with a lattice parameter a = 5.356 Å. The solid wall atoms were frozen and

the oxygen-solid (LS) interactions were varied between the hydrophobic and hydrophilic val-

ues given in Ref. S21, with εSS = {0.164, 0.343, 0.673, 1.113, 2.08} kcal/mol. These wettings

are characterized by the respective contact angles θ ∼ {140◦, 130◦, 110◦, 90◦, 50◦}, determined

from additional sessile drop simulations on uncharged surfaces (where we followed the proce-

dure detailed in Ref. S18). The values for the contact angles, measured at 298 K from three

independent simulations for a given wetting, can be found in Table S1. Lorentz-Berthelot

mixing rules were applied for all the cross-interactions.

For all the simulations we imposed a timestep of 2 fs and we ran an equilibration stage

of 500 ps where we fixed the temperature at 298 K via a Nosé-Hoover thermostat with a

damping time of 200 fs. Following Ref. S21, we also set the pressure to 10 atm by using the

top wall as a piston. We then continued applying the thermostat, and fixed the top wall at

its equilibrium position in the production run. The average distance between the walls for

all the runs was H̃ ∼ 45 Å.

The slip length was determined from non-equilibrium molecular dynamics (NEMD) sim-

ulations of 1 M of NaCl dissolved in SPC/E water at 10 atm. With that regard, we applied

a constant shear velocity Uwall to both walls in opposite x directions, generating far from the

wall a linear velocity profile with constant shear rate. The friction coefficient was determined

from the relation τ = λvs between the shear stress τ and the velocity jump at the interface,

vs = Uwall − vx(zs), with zs measured from the Gibbs dividing plane method, see Ref. S4.

The slip length was then b = η/λ, with η corresponding to the bulk viscosity obtained from

the relation τ = η dvx
dz

.

For a given wetting angle, determined by εLS, 3 independent shears in the linear response

regime were applied, Uwall = {10, 15, 20} m/s, and for a given shear three independent

simulations were performed, giving (taking into account the possibility of independently
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measuring τ for the top and the bottom wall) 18 independent measures of viscosity and

friction, with a production time of 4 ns. The error of both transport coefficients corresponded

to the statistical error within 95% of confidence level and the error on b was determined from

error propagation computation:

∆b = b

√(
∆η

η

)2

+

(
∆λ

λ

)2

. (35)

Good agreement was found between the simulated viscosity and the experimental value for all

the wettings.S23,S24 The slip length and shear plane position values are shown in Table S1,

where we note that the most hydrophilic situation (θ ∼ 50◦) is a no-slip situation with

b = 0.0 Å.

Table S1: Slip length b and shear plane position zs along with the effective slip beff = b−zs, for
the different wetting angles θ considered in our study, which are controlled by the interaction
energy εLS between liquid and solid atoms

θ (deg) εLS (kcal/mol) b (Å) zs (Å) beff (Å)
142.16± 16.49 0.160 54.89± 6.99 1.44± 0.02 53.45
127.90± 6.20 0.231 23.50± 1.82 1.07± 0.06 22.43
108.41± 0.81 0.323 6.94± 2.05 0.83± 0.05 6.11
87.25± 8.29 0.416 3.98± 0.53 0.59± 0.13 3.39
51.46± 2.65 0.568 0.0 (−0.47± 0.34) 0.33± 0.03 -0.33

Aside of EMD and NEMD simulations of different aqueous electrolytes enclosed between

LJ walls, we also performed an extra set of simulations of 1 M of NaCl dissolved in SPC/E

water confined between graphene walls with size Lx = 46.73 Å and Ly = 34.08 Å. The solu-

tion parameters were the same than the ones for LJ walls and the oxygen-carbon interactions

were modelled as described in Ref. S25, with a contact angle of θ = 84.98◦± 5.57◦. The slip

length of this configuration, measured analogously as for LJ walls, was b = 539.53± 41.23 Å

and zs = 0.76± 0.20 Å.
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3 Generality of the proposed model

After exposing the theroretical framework under which we will obtain the different contri-

butions to Mto, we also detailed the MD simulations we performed with the objective of

determining the solvent and solute atomic enthalpies as a function of the wetting proper-

ties of the system. MD simulations are a useful and necessary tool to obtain such atomic

enthalpy profiles, although they present some limitations that are discussed here.

3.1 Enthalpy excess density determination

The only contributions to δh in Eq. (34) that cannot be computed analytically are the solvent

and solvation contributions, δhwat and δhsol respectively. In Fig. S2 we can find represented

the total enthalpy excess densities computed directly from the aqueous electrolyte solutions

following Eq. (18) for NaCl, KCl (Fig. S2a), and NaI (Fig. S2b), for a concentration ns = 1 M,

together with the profiles for pure water simulations (with no dissolved ions). In Fig. S2 we

can see that in the case of an asymmetric salt, with a large anion which adsorbs specifically

on the surface (Fig. S2b), the solute enthalpy density profile presents a non negligible contri-

bution. However, in the case of symmetric salts (Fig. S2a), the solute enthalpy, even at large

concentrations, does not affect the total enthalpy profile, which is controlled by the solvent.

Therefore, in the following, we will present the different enthalpies results for NaCl dissolved

in water within a 1 M concentration, although they are equivalent to pure water simulation

results and thus extendable to any other symmetric salt type and lower concentrations.

The fact that the solution profile is mostly dominated by water is due to the depletion

of the ions from the wall, characteristic of symmetric salts, which implies that only the

water molecules are affected by the interactions with the solid atoms (Fig. S3). Therefore,

we decided to approximate the ion density profiles (in Fig. S3b) by a smooth step function

given by, for half the channel, 1/{1 + exp
[
(d` − x)/(1 Å)

]
}, which allowed us to determine

the size of the depletion layer d`, , typically on the order of ∼ 5 Å..
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(a) (b)

Figure S2: Enthalpy excess density profiles of pure water (continuous line) simulations to-
gether with the profiles corresponding to an aqueous solution of (a) two symmetric salts:
NaCl and KCl; and (b) one asymmetric salt: NaI (where the large iodide ion specifically
adsorb on the surface), with a bulk salt concentration ns ∼ 1 M. All the results correspond
to uncharged walls.

(a) (b)

Figure S3: Number density profiles for an aqueous electrolyte enclosed between LJ walls
(θ ∼ 140◦) of (a) oxygen and hydrogen atoms; (b) Na+ and Cl− ions normalized by their
bulk concentration ns. The fit by a smooth step function is also represented in solid line.
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3.2 Local pressure profile in MD

Before studying the simulation results, it is important to comment on one important aspect

about the enthalpy excess density determination in MD simulations. In the model proposed

in Section 3.2 for the enthalpy excess density contributions, we discussed that the enthalpy

contributions related to the liquid-solid interactions, namely δhwat and δhsol in Eq. (34),

cannot be a priori described by a simple analytical formula, and therefore both contributions

have to be determined from MD simulations using the atomic enthalpy profiles given by

Eq. (18). Nevertheless, in this equation, the enthalpy excess density profile is given as

a function of the local pressure differences δp(z), which are not well defined in molecular

dynamics simulations.S10 Indeed, although the total system pressure is well defined in MD

simulations from the total virial of the system,

P = nkBT −
1

3V

〈∑
i<j

rij · fij

〉
, (36)

where n = N/V is the density of the system, V its volume, and
〈∑

i<j rij · fij
〉

the expected

value of the sum of the products of the interparticle distance among atoms and the forces

acting on them, the local definition of the stress in a liquid is not unique.S26 Although it can

be proven that the vagueness of the local pressure tensor definition have no effect on physical

properties such as the solid-liquid surface tension,S27 it has been already discussed and

showed in previous work that the choice of the local pressure definition affects the computed

thermo-osmotic response coefficient Mto.S10 Nevertheless, because it has been shown that the

different proposed methods to determine δh, including those based on different local stress

gradient definitions, provided relatively similar Mto results,S10,S28 we decided to measure

the local enthalpy profile from the stress per atom definition based on the virial formulation,

easier to implement in MD simulations and which works well to give a general and qualitative

picture in terms of orders of magnitude for the different contributions of the thermo-osmotic

response, which is the main objective of the present work.
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In the presented results we choose a definition of the stress per atom given by the virial-

like expression:

pαβi = mivαivβi +
1

2

∑
j 6=i

rαijfβij, (37)

where pαβi denotes the stress tensor component for the atom i in the αβ direction with

{α, β} = {x, y, z}. In the following, we will drop the spatial coordinates to light notation.

In a MD simulation, the local pressure profile is obtained dividing the space in bins (which

for simplicity we will suppose of the same size) and averaging over the N(zbin) particles in

the bin:

p(zbin) =

∑
i∈bin pi

N(zbin)
.

The total pressure acting on the system will be then given by the sum to all the bins of the

average pressure tensor multiplied by the number of particles in the bin:

∑
bin

p(zbin)N(zbin) =
∑
bin

∑
i∈bin

pi.

Taking into account from the equipartition theorem that m 〈v2〉 = kBT , and Eq. (36), it is

straightforward that

∑
bin

∑
i∈bin

pi = NkBT +
1

2

〈∑
i<j

rijfij

〉
= PV.

Note that, explicitly accounting for the spatial coordinates,
∑

α pαα = 3PV in a bulk system.

We have then proven that the quantity
∫
δp n dz in Eq. (18), and therefore the total enthalpy

excess defined as

H0 =

∫ ∞
0

δh dz, (38)

is unambiguous and independent of the local pressure definition. Nevertheless, the thermo-
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osmotic response coefficient, given by Eq. (9), can be decomposed as

Mto =
1

η

(∫ ∞
z0

δh(z) z dz + beffH

)
, (39)

where

H =

∫ ∞
z0

δh dz. (40)

In the slip situation H = H0 and then it will be well defined. However, the integral of δh z

will depend on the local pressure definition and is only expected to predict the real thermo-

osmotic response of the system quantitatively for very slipping systems (when the beffH term

dominates). It will be thus useful to explore the different Mto contributions studying how

do they compare to H.

3.3 About enthalpy excess and its comparison with the thermo-

osmotic response

Let’s explore the effect of wetting on the enthalpy excess (per unit area) and how it com-

pares to the predicted thermo-osmotic response coefficient. Because ions are depleted from

the wall, wall-ions interactions are almost negligible and wetting mostly affects the water

enthalpy excess density profiles, δhwat. As detailed in Section 2, we controlled the wetting by

varying the liquid-solid interaction energy εLS = {0.160, 0.231, 0.323, 0.416, 0.568} kcal/mol,

corresponding respectively to contact angles θ ∼ {140◦, 130◦, 110◦, 90◦, 50◦}. In Fig. S4a we

can observe the enthalpy excess density profile for different contact angles. We see that δhwat

vanishes in the bulk and in the wall region, and that it presents strong oscillations close to

the interface, which are more pronounced for the more hydrophilic situations. In Fig. S4b we

can see the running integral of the δhwat profiles presented in Fig. S4a. We observe that Hwat

converges in the bulk region for all the wettings, and that it recovers the strong oscillations

at the interface present in δhwat.

The water enthalpy values represented in Fig. S5a are obtained by considering a semi-
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(a) (b)

Figure S4: (a) Enthalpy density profiles for different wettings. (b) Enthalpy excess running
integral for different wettings with the same legend as in Fig. S4a.

infinite system constituted by a wall and a homogeneous bulk region far from the interface.

We can do so by splitting δhwat profiles in two (one for each wall) and extending the bulk value

to infinite. The enthalpy excess is then measured from Eq. (40) with z0 related to the effective

slip determined from NEMD simulations (Table S1): z0 = 0 for θ ∼ {140◦, 130◦, 110◦, 90◦}

(slip situation); and z0 = −beff for θ ∼ 50◦ (stagnant layer situation). In Fig. S5a we

observe that the enthalpy excess increases (from −0.02 kcal/molÅ to 0.04 kcal/molÅ) with

the wetting and that it changes sign for θ ∼ 90◦. Nevertheless, it is interesting to note that

a stagnant layer can be present for any wetting due to e.g. nanoasperities on the surface.

This situation is the typical one in experiments, where some defects and bumps are present

in the wall due to the difficulty of obtaining perfectly smooth surfaces with experimental

techniques. Therefore, it is interesting to study the effect of different stagnant layers sizes

(i.e. different integral lower boundaries z0 in Eq. (40)) for all the wettings considered in

this study. The values obtained for Hwat as a function of beff for different contact angles are

represented in Fig. S5b. In this figure we observe a strong decrease of the water enthalpy of

the system when increasing the stagnant layer size (namely −beff). This is due to the strong

oscillations close to the wall of the running integral discussed in Fig. S4b, which significantly
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contribute to the Hwat integral value. For θ ∼ 90◦ we observe a significant increase of Hwat

in the stagnant layer situation (beff < 0) when compared to the slip situation (beff > 0). This

is due to the very small value obtained for this wetting in the slip situation, related to the

Hwat change of sign with the contact angle. Aside of this effect, we also observe for this

wetting a Hwat decrease when increasing the stagnant layer size.

(a) (b)

Figure S5: Enthalpy excess water contribution for different wettings (a) measured for a
given effective slip determined from NEMD, stars correspond to Hwat < 0 and circles to
Hwat > 0; (b) as a function of the effective slip beff . The oscillations for beff < 0 are due to
the oscillations of the enthalpy density profile close to the wall.

With regard to the thermo-osmotic response coefficient, in Fig. S6a we observe a similar

wetting effect in its water contribution, which produces a change of sign in Mwat
to in this

case also for a contact angle of θ ∼ 90◦. In Fig. S6b the value of Mwat
to is represented

as a function of the effective slip. We observe that, analogously to Hwat in Fig. S5b, the

presence of a stagnant layer (beff < 0) significantly reduces the thermo-osmotic response, up

to three orders of magnitude for the most hydrophobic systems. We also observe a small

effect of slip (beff > 0) in the value of Mwat
to , due to the contribution beffHwat in Eq. (39) (with

Hwat constant for beff > 0, see Fig. S5b). This slip contribution is negligible in the case of

θ ∼ 90◦, because Hwat ∼ 0 for this case. To simplify the coming discussion, in the following,
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when referring to Hwat and Mwat
to , we will restrict to the values shown in Figs. S5a and S6a

respectively, obtained for the beff values from NEMD simulations.

(a) (b)

Figure S6: Thermo-osmotic response coefficient water contribution for different wettings (a)
measured for a given effective slip determined from NEMD, stars correspond to Mwat

to < 0
and circles to Mwat

to > 0; (b) as a function of the effective slip beff .

The other non-analytical term in Eq. (34) is the one related to the solvation enthalpy of

the ions δhsol, defined in Eq. (29). From δhsol we can define Hsol and M sol
to , and study how do

they compare to the other non-electrostatic and non-analytical term: the water contribution.

Because of the depletion of the ionic density profiles from the wall for a neutral surface

charge (Fig. S3b), the wetting effect on both Hsol and M sol
to is very small, and the solvation

contribution is mostly affected by the Debye length λD and the surface charge density Σ.

We can see in Fig. S7a that, at a given λD, Hsol increases when increasing Σ and that it

is not affected by λD at high Σ, while for low Σ it can vary up to 3 orders of magnitude.

In general, we observe that Hwat � Hsol for all the λD and Σ range considered, except

for the wetting θ ∼ 90◦, where the water enthalpy excess is close to 0, and a competition

between water and solvation contributions may happen depending on λD and Σ values.

Nevertheless, such competition never happens for the predicted solvation contribution to the

thermo-osmotic response coefficient (M sol
to in Fig. S7b), where for the range of parameters
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studied Mwat
to � M sol

to . Therefore we can consider, in terms of the thermo-osmotic response

coefficient, a negligible solvation contribution.

(a) (b)

Figure S7: Comparison between water (dash-dotted lines) and solvation (solid lines) contri-
butions for different wettings θ and different surface charges Σ as a function of the Debye
length, respectively for (a) enthalpy excess H; (b) thermo-osmotic response coefficient Mto.

It is then left to study how the water contribution compares to the electrostatic enthalpy

contributions in Eq. (34), namely δhdp and δh∗el (given by Eqs. (23) and (33) respectively).

But first, it is interesting to assess the effect that the consideration of a depletion layer of

thickness d` has in the classical electrostatic term δhel (defined in Eq. (13)). With that

regard, we can see in Fig. S8 the comparison between the classical and the modified electro-

static terms for the enthalpy excess and the thermo-osmotic response. We observe a similar

behavior for H and Mto, where the electrostatic (Hel, M
el
to) and modified electrostatic term

(H∗el, M
el∗
to ) identify at low Σ and high λD. This is because the classical electrostatic poten-

tial decays for distances of order of the minimum of λD and `GC. Then, for the potential to

decay for distances larger than d` (so the depletion layer has a smaller impact in the total

integral) it is needed a large λD (or low ns) and a large `GC (small Σ). In general terms we

see that considering the modified electrostatic term implies a decrease of the electrostatic

contribution of up to one order of magnitude for the largest Σ considered.

At last, we find represented in Fig. S9 how the modified electrostatic contribution com-
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(a) (b)

Figure S8: Comparison between modified electrostatic (dashed lines) and classical electro-
static (solid lines) contributions for different surface charges Σ at a given wetting, as a
function of the Debye length, respectively for (a) enthalpy excess H; (b) thermo-osmotic
response coefficient Mto. The color code is the same as in Fig. S10 (increasing absolute value
with increasing surface charge).

pares to the solvent dipole contribution. Again, a similar global behavior is observed for

both H and Mto. In Fig. S9a, we see that for all Σ and for a broad range of λD, H∗el � Hdp,

and that both terms are comparable only for the smallest λD values considered. In general

we see that both contributions increase when increasing λD and Σ. We also note that the

region where both terms are comparable is when they reach an absolute value smaller than

the measured Hwat in Fig. S5a, with the exception of θ ∼ 90◦, when Hwat ∼ 0 and, as we

observed also in terms of solvation contribution, a more detailed description is needed for

this specific wetting. This detailed description is not required in terms of Mto contributions,

where we can see, by comparing the water contribution values in Fig. S6a with the ones

corresponding to M el∗
to and Mdp

to contributions reported in Fig. S9b, that the values for the

lower λD values where M el∗
to and Mdp

to are comparable are much smaller than the reported

values of Mwat
to , on the order of 10−8 − 10−9 m2/s and thus, we can consider M el∗

to �Mdp
to .

We can hence conclude that the main contributions to the thermo-osmotic response

coefficient Mto come from the water and the electrostatic term, considering negligible the
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(a) (b)

Figure S9: Comparison between modified electrostatic (dashed lines) and dipole moment
(solid lines) contributions for different surface charges Σ at a given wetting, as a function
of the Debye length, respectively for (a) enthalpy excess H; (b) thermo-osmotic response
coefficient Mto. The color code is the same as in Fig. S10 (increasing absolute value with
increasing surface charge).

solvation and the dipole moment contributions. We can then focus our discussion considering:

Mto 'Mwat
to +M el∗

to , (41)

and studying how do these contributions affect the total thermo-osmotic response of the

system.

4 Thermo-osmotic response results for all wettings

The total thermo-osmotic response coefficient for an aqueous electrolyte consisting on water

and a symmetric salt enclosed in between standard Lennard-Jones walls, can be found in

Fig. S10.
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Figure S10: Total thermo-osmotic response coefficient (solid lines) for different wettings
and surface charges as a function of the Debye length. In all the graphs the two main
contributions, water (dash-dotted lines) and modified electrostatic (dashed lines), are also
represented.
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