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Modelling of band edge dynamics 

To include exciton cooling in the band-gap dynamics upon non-resonant excitation, we employ a 

rate equation model as depicted in figure 1. Excitation by the laser is treated as instantaneous, 

which creates a highly excited electron hole pair |ei,hi>. This exciton then relaxes to lowest 

excitonic state |e0,h0> with a cooling time 𝜏𝑐. The exciton recombination time is denoted as 𝜏𝑒. 

Since the exciton cooling times are much shorter than the recombination time (also see figure 2) 

we neglect direct recombination of the initial state |ei,hi>. The populations of the initial state, Ni, 

and ground state, N0, are then described by the resulting differential equation:  
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It has the following solution for the band-gap state population upon non-resonant excitation: 

𝑁0(𝑡) = Θ(𝑡) ⋅
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This equation still holds for resonant excitation, in the limit of vanishing cooling time. To 

incorporate bi-exciton dynamics into this model, we mimic the commonly used bi-exponential 

model1,2 by using two instances of the above equation, one representing the single exciton decay, 

the other one the bi-exciton recombination, where the exciton lifetime, 𝜏𝑒 is replaced by the bi-

exciton recombination time, 𝜏𝑏 , arriving at: 
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Here, 𝑁𝑖,𝑒(0) and 𝑁𝑖,𝑏(0) denote the number of excited electron hole pairs in particles with a 

single exciton only and particles with two excitons, respectively. 

 

Calculation of the mean excitation number from the band-gap dynamics 

We first consider a population conserving rate-equation model for Auger decay of bi-excitons and 

recombination of excitons: 
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Here, 𝜏𝐵 and 𝜏𝐸 are the Auger decay time for bi-excitons and the recombination time of excitons, 

NB  and NE  denote the numbers of excited bi-excitons and excitons, respectively. It was assumed 

that all bi-excitons decay into excitons via direct recombination, i.e. there is no direct 

recombination for bi-excitons, which is a reasonable approximation given the more than 20-fold 

difference in lifetimes. The solution to equations 5+6 is: 
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From equations 7+8 the bleach signal, S(t ), is constructed as: 

𝑆(𝑡) ∝ 𝑁𝐸(𝑡) + 2 ⋅ 𝑁𝐵(𝑡) (9) 
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This retrieves the commonly used bi-exponential model for multi-excitonic decays. The factor of 

2 accounts for the fact, that the bi-excitonic state results in approximately twice the bleach signal 

as a singly excited quantum dot.  For low excitations densities, we assume Poissonian statistics for 

the probability, P(N), to find N excitations in a single particle: 

𝑃(𝑁) =  
⟨𝑁⟩𝑁

𝑁!
⋅ 𝑒−⟨𝑁⟩. (11) 

. 



Comparing the probabilities for double and single excitations in equation 11, the mean exciton 

number per particle, <N>, is found as 
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The parameters NB  and NE  can be extracted from a bi-exponentail fit of the band-gap dynamics 

in conjunction with equation 10. 

In the limit  𝜏𝐵 ≪ 𝜏𝐸 the temporal evolution of the bleach signal (equation 10) could also be 

simplified to 
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For the exciton and bi-exciton lifetimes presented in this work, this would lead to an overestimation 

for 𝑁𝐵 of approximately 5%. In the regime of a bi-exponential model for the band-gap dynamics, 

𝑆(𝑡) = 𝐴𝑓𝑎𝑠𝑡 ⋅ 𝑒
−
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the exciton numbers can be estimated as 𝑁𝑏𝑖𝑒𝑥𝑐 = 𝐴𝑓𝑎𝑠𝑡  and 𝑁𝑒𝑥𝑐 = 𝐴𝑠𝑙𝑜𝑤 − 𝐴𝑓𝑎𝑠𝑡 , leaving  
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Extracting the exciton and bi-exciton numbers from a bi-exponential fit is only valid as long, as 

there are no tri-excitons present, as they are not accounted for in the model. We estimate, that this 

treatment is valid, as long as there are at least tenfold more bi-excitons than tri-excitons. From 

equation 11 one can derive: 
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⇒ ⟨𝑁⟩ ≤ 0.3 (18) 

An overview of extracted mean exciton numbers for low fluences can be found in the inset of 

figure S1. 

 

Excitation density dependence of the transient signal 

In the MEG range, Poisson statics can no longer be employed. We therefore employ an Einstein 

coefficient-based approach to be able to compare excitations densities below and above the MEG 

onset. We neglect carrier relaxation during our 100 fs pump pulse. The carrier dynamics can  then 

be described by excitation by photon absorption and de-excitation by stimulated emission. Using 

the Einstein-coefficient for absorption, 𝐴, the number of excited electron hole pairs, N, can be 

described as: 

𝑑𝑁 = 𝐴 ⋅ 𝑁𝑔𝑠 ⋅ 𝑑𝑃 − 𝐴 ⋅ 𝑁 ⋅ 𝑑𝑃 (19) 

= 𝐴 ⋅ (𝑁𝑡𝑜𝑡 − 2𝑁) ⋅ 𝑑𝑃. (20) 

Here, 𝑁𝑔𝑠 denotes the number of unexcited electron hole pairs, P is the excitation power. 𝑁𝑡𝑜𝑡 is 

the number of electron hole pairs in the system that are in resonance with the pump. This 

inhomogeneous differential equation is solved by: 

𝑁(𝑃) = 0.5 ⋅ 𝑁𝑡𝑜𝑡 ⋅ (1 − e−2𝐴𝑃  ). (21) 

This relationship gives a good representation for our data as shown in figure S1. Here, 𝐹0 denotes 

the fluence, at which 50% of the saturation value is reached. For excitations below the MEG onset 



also the mean exciton numbers extracted from the band gap dynamics as described above are 

shown in the inset. The linear relation between the mean exciton number, ⟨𝑁⟩, and the normalized 

fluence is commensurate with the two-fold degenerate LUMO state in the se particles and further 

justifies the Einstein coefficient-based approach. 

 

Figure S1: Normalized bleach signal as a function of pump fluence. All data points have been fit to a model 

based on Einstein coefficients for absorption and stimulated emission (dotted line). The value F0 denotes 

the fluence, where 50% of the saturation value is reached, which is also the threshold for a linear relationship 

between fluence and bleach signal. Different pump wavelengths are color-coded as 2.4 µm (red), 2.0 µm 

(orange), 1.2 µm (yellow), 800 nm (green) and 400 nm (blue). The inset shows the mean exciton number 

per quantum dot as retrieved from Poissonian statistics using the same normalized fluence.  
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