Supporting Information for

Anisotropic Nodal Loop in NiB₂ Monolayer with Nonsymmorphic

Configuration

Qian Xia,^{†a} Yang Hu,^{†a} Ya-ping Wang,^b Chang-wen Zhang,^a Miao-juan Ren,^a Sheng-shi Li^{*a} and Wei-xiao Ji^{*a}

^a Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, P. R. China

^b State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan,

Shandong 250100, P. R. China

† These authors contributed equally to this work.

* Corresponding authors

Type of strains	coefficient of strain		\mathbf{P}_1	P ₂	P ₃
None	0%	$v_F(\mathrm{m/s})$ $\mid m_e^* \mid$	5.56×10^{5} m/s	$1.16 \times 10^{6} \text{ m/s}$	6.90×10^5 m/s
			$4.70 \times 10^{-5} \mathrm{m_0}$	$2.50 \times 10^{-5} m_0$	$2.85 \times 10^{-5} m_0$
Uniaxial strain along a direction	4%	$v_F (\mathrm{m/s})$ $\mid m_e * \mid$	$7.38 \times 10^{5} \mathrm{m/s}$	1.13×10 ⁶ m/s	8.19×10 ⁵ m/s
			$3.51 \times 10^{-5} m_0$	$2.58 \times 10^{-5} m_0$	$2.30 \times 10^{-5} m_0$
	6%	$v_F(\mathrm{m/s})$ $\mid m_e*\mid$	7.36×10^{5} m/s	6.68×10^5 m/s	7.78×10^{5} m/s
			$3.51 \times 10^{-5} m_0$	$4.37 \times 10^{-5} m_0$	$2.38 \times 10^{-5} m_0$
Uniaxial strain along b direction	4%	$v_F(\mathrm{m/s})$ $\mid m_e*\mid$	7.83×10 ⁵ m/s	1.14×10 ⁶ m/s	7.16×10 ⁵ m/s
			$3.24 \times 10^{-5} m_0$	$2.47 \times 10^{-5} m_0$	$2.74 \times 10^{-5} m_0$
	6%	$v_F(\mathbf{m/s})$ $\mid m_e*\mid$	7.91×10^5 m/s	$1.12 \times 10^{6} \text{ m/s}$	7.11×10^5 m/s
			$3.16 \times 10^{-5} m_0$	$2.46 \times 10^{-5} m_0$	$2.76 \times 10^{-5} m_0$
Biaxial strain	4%	$v_F(\mathbf{m/s})$ $\mid m_e*\mid$	5.64×10^{5} m/s	1.19×10 ⁶ m/s	7.83×10^5 m/s
			$4.46 \times 10^{-5} m_0$	$2.36 \times 10^{-5} m_0$	$2.41 \times 10^{-5} m_0$
	6%	$\frac{v_F(\mathrm{m/s})}{\mid m_e*\mid}$	$7.48 \times 10^{5} \text{ m/s}$	1.19×10 ⁶ m/s	$8.18 \times 10^5 \mathrm{m/s}$
			$3.30 \times 10^{-5} m_0$	$2.32 \times 10^{-5} m_0$	$2.27 \times 10^{-5} m_0$

Table S1 Calculated Fermi velocity (v_F) and effective mass of electron (m_e^*) at different band crossings for free standing and stressed NiB₂ monolayer.

Structures	Magnetic ground state	Notes	
ScB ₂	Nonmagnetic state	/	
TiB ₂	Nonmagnetic state	/	
VD	E	E(FM) - E(AFM) = -0.30eV	
VB_2	Ferromagnetic state	E(FM) - E(NM) = -0.89eV	
C D		E(FM) - E(AFM) = -1.48eV	
CrB_2	Ferromagnetic state	E(FM) - E(NM) = -3.20eV	
MD		E(AFM) - E(FM) = -0.20eV	
MinB ₂	Antiferromagnetic state	E(AFM) - E(NM) = -5.07eV	
E-D		E(AFM) - E(FM) = -0.22eV	
FeB ₂	Antiferromagnetic state	E(AFM) - E(NM) = -3.95eV	
		E(FM) - E(AFM) = -0.05 eV	
CoB ₂	Ferromagnetic state	E(FM) - E(NM) = -1.90eV	
CuB ₂	Nonmagnetic state	/	
ZnB ₂	Nonmagnetic state	/	

Table S2 Calculated magnetic ground state of MB₂ (M=Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn) monolayers.

Fig. S1 (a-d) Snapshots of geometric structure for NiB₂ monolayer during AIMD simulation at 0ps, 10ps, 25ps and 30ps, respectively.

Fig. S2 (a) Schematic diagram of glide mirror symmetry in NiB₂ monolayer. The yellow and cyan parts represent the wave function whose eigenvalue under the operation of glide mirror is - i. (b) The corresponding operation diagram in NiB₂ monolayer.

Fig. S3 (a) Calculated band structure of NiB_2 monolayer. (b-d) Real part of Kohn-Sham wave functions near band crossing points.

Fig. S4 (a-b) Top and side views of geometric structure for distorted NiB_2 monolayer. The green dotted line represents the equilibrium position of B atom. (c) The band structure of distorted NiB_2 monolayer.

Fig. S5 Obtained band structures of NiB_2 monolayer under uniaxial strain along *a* direction.

Fig. S6 Obtained band structures of NiB_2 monolayer under uniaxial strain along b direction.

Fig. S7 Obtained band structures of NiB_2 monolayer under biaxial strain.

Fig. S8 The partial charge density of band crossing point P2 under different *a*-axial strain: (a) - 6%, (b) -3%, (c) 3%, (d) 6%.

Fig. S9 The partial charge density of band crossing point P3 under different *a*-axial strain: (a) - 6%, (b) -3%, (c) 3%, (d) 6%.

Fig. S10 (a) Calculated band structures of NiB_2 monolayer by PBE+U (green solid line, U=5.1eV) and HSE06 (yellow dotted line) functionals. (b) Calculated band structure with SOC effect.

Fig. S11 (a) Schematic diagram on the calculation of exfoliation energy. (b) Calculated exfoliation energy of NiB_2 monolayer.

Fig. S12 (a-b) Top and side views of geometric structure for ScB_2 monolayer. (c) Calculated band structure of ScB_2 monolayer. The spin up and down channels are degenerate.

Fig. S13 (a-b) Top and side views of geometric structure for TiB_2 monolayer. (c) Calculated band structure of TiB_2 monolayer. The spin up and down channels are degenerate.

Fig. S14 (a-b) Top and side views of geometric structure for VB_2 monolayer. (c) Calculated band structure of VB_2 monolayer. The red and blue lines represent spin up and down channels, respectively.

Fig. S15 (a-b) Top and side views of geometric structure for CrB_2 monolayer. (c) Calculated band structure of CrB_2 monolayer. The red and blue lines represent spin up and down channels, respectively.

Fig. S16 (a-b) Top and side views of geometric structure for MnB_2 monolayer. (c) Calculated band structure of MnB_2 monolayer. The spin up and down channels are degenerate.

Fig. S17 (a-b) Top and side views of geometric structure for FeB_2 monolayer. (c) Calculated band structure of FeB_2 monolayer. The spin up and down channels are degenerate.

Fig. S18 (a-b) Top and side views of geometric structure for CoB_2 monolayer. (c) Calculated band structure of CoB_2 monolayer. The red and blue lines represent spin up and down channels, respectively.

Fig. S19 (a-b) Top and side views of geometric structure for CuB_2 monolayer. (c) Calculated band structure of CuB_2 monolayer. The spin up and down channels are degenerate.

Fig. S20 (a-b) Top and side views of geometric structure for ZnB_2 monolayer. (c) Calculated band structure of ZnB_2 monolayer. The spin up and down channels are degenerate.