Supporting Information

Strategies for Interface Issues and Challenges of Neural Electrodes

Cuiyuan Liang, ^a Yan Liu, ^a* Weihong Lu, ^a Gongwei Tian, ^a Qinyi Zhao, ^a Dan Yang, ^a Jing Sun, ^a and Dianpeng Qi ^a*

a. National and Local Joint Engineering Laboratory for Synthesis, Transformation
and Separation of Extreme Environmental Nutrients; MIIT Key Laboratory of
Critical Materials Technology for New Energy Conversion and Storage, School of
Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin
150001, P. R. China.

*Corresponding authors: Dianpeng Qi (E-mail: <u>dpqi@hit.edu.cn</u>) and Yan Liu (E-mail: liuyan1986@hit.edu.cn)

Fig. S1. Schematic representation of common conductive polymers (a) PEDOT, (b) PPy, and (c) PANI, diagram of (d) polymer conductivity mechanism (PEDOT as an example).

The electron conductivity of conductive polymers is derived from the delocalization of π bond electrons on the conjugated backbone structure. The ionic dopant (e.g., PSS in PEDOT:PSS, and tosylate (Tos) in PEDOT:Tos)^{1, 2} can make the conductive polymer generate free radicals to form a polaron when paired with the dopant, and then be further oxidized to a bipolaron. Thereby generating additional electrons or holes to enhance the conductivity of the polymer.

Parameters	Evaluation standard	Refs
Charge storage capacity (CSC)	Higher CSC can transfer more charges, and thus the greater the signal strength of the stimulation.	3, 4
Impedance	Lower impedance can decrease thermal noise, which makes electrophysiological signal monitoring more detailed.	5, 6
Charge injection limit (CIL)	Higher CIL can facilitate a large amount of charge transfer, which improves the ability of the electrode to stimulate neurons.	7, 8

Table S1. The parameters for evaluating the electrochemical performance of neural electrodes.

Charge transport mechanism	Materials	Classification of electrodes	Evaluation parameters	
Electrons	Metal electrode	Nanometal electrode		
		Composite metal electrode		
	Carbon-based flexible electrode	Graphene electrode	Innadanaa	
		Carbon nanotube electrode	charge injection limit (CIL),	
Ions	Hydrogels	Ion conductive hydrogel		
		Ion-conducting		
		organohydrogel	capacity (CSC),	
Electrons and ions	Conductive polymers	Polypyrrole		
		Poly (3, 4-	mechanical high	
		ethylenedioxythiophene) and	density	
		its derivatives	aensity	
	Composite material	Conductive polymers and		
		composites		
		Hydrogel and composites		

 Table S2. the charge transfer mechanism, material, and evaluation parameters of neural electrodes.

Material	Method	Impedance at 1 kHz (KΩ)	CSC ^a (mC/cm ²)	CIL ^b (mC/cm ²)	Refs
Pt-nanograss	Chemical deposition	99.52	-	0.3	9
Pt/EGaIn ^c	Screen printing	250 ± 40	-	-	10
Nanoporous Pt	Electrodeposition	2.4	□≈1.2	3	11
Au nanoparticles	LOR ^d and sputtering deposition	0.6	-	-	12
GF ^e -PC ^f -20	Wet spinning and coating	51.47 ± 44	798 ± 110	8.9 ± 1.3	5
Graphene	Laser pyrolysis and chemically doped	0.52	-	3.1	13
CNT array	Chemical vapor deposition	3	_	1–1.6	14
CNT fiber	Wet-spinning	14.09 ± 0.3	372	6.52	15
PEDOT-CNT Microelectrodes	Electropolymeriz ation	15.51 ± 1.19	-	1.21 ± 0.02	16
PEDOT-CNT nanotunnel	Electrospinning and electrodeposition	2.6 ± 0.4	26.3 ± 2.4	-	17
PEDOT/CNT	Electrodeposition	15	6	1.25	18
PEDOT/PSS	Deposition	4	123	2.92	19
PPy/SWCNTs	Electrodeposition	2.06	1244	7.5	20
PPy/PSS	Electrodeposition	2.2	705	5	20
PPy/Cl	Electrodeposition	2.82	495	3.2	20
SF ^g organohydrogel	UV irradiation	>0.04 at 0.1-100 kHz	-	-	21
GelMA ^h /PEDOT: PSS	UV irradiation	261 at 1Hz	-	-	22
Alg-PAAm ⁱ	UV irradiation and deposition	25 at 1 Hz	-	-	23

 Table S3. Comparison of electrochemical parameters and preparation methods of neural electrodes.

^a charge storage capacity, ^b charge injection limit, ^ceutectic gallium–indium, ^d bi-layer lift-off resist, ^e graphene-fiber, ^f parylene-C, ^g silk fibroin, ^hgelatin methacryloyl, ⁱalginate-polyacrylamide

Reference

- 1. M. Heydari Gharahcheshmeh and K. K. Gleason, *Materials Today Advances*, 2020, **8**, 100086.
- 2. P. Sakunpongpitiporn, K. Phasuksom and A. Sirivat, Polym. Int., 2021.
- B. Ji, C. Ge, Z. Guo, L. Wang, M. Wang, Z. Xie, Y. Xu, H. Li, B. Yang and X. Wang, *Biosens. Bioelectron.*, 2020, 153, 112009.
- 4. C. Boehler, D. M. Vieira, U. Egert and M. Asplund, ACS Appl. Mater. Interfaces, 2020, 12, 14855-14865.
- 5. K. Wang, C. L. Frewin, D. Esrafilzadeh, C. Yu, C. Wang, J. J. Pancrazio, M. Romero-Ortega, R. Jalili and G. Wallace, *Adv. Mater.*, 2019, **31**, 1805867.
- 6. Y. H. Cho, Y.-G. Park, S. Kim and J.-U. Park, *Adv. Mater.*, 2021, **33**, 2005805.
- S. Zhao, G. Li, C. Tong, W. Chen, P. Wang, J. Dai, X. Fu, Z. Xu, X. Liu and L. Lu, *Nat. Commun.*, 2020, 11, 1-12.
- 8. C. Kleber, K. Lienkamp, J. Rühe and M. Asplund, *Advanced Biosystems*, 2019, **3**, 1900072.
- 9. C. Boehler, T. Stieglitz and M. Asplund, *Biomaterials*, 2015, 67, 346-353.
- R. Dong, L. Wang, C. Hang, Z. Chen, X. Liu, L. Zhong, J. Qi, Y. Huang, S. Liu, L. Wang, Y. Lu and X. Jiang, *Small*, 2021, 17, 2006612.
- 11. S. Park, Y. J. Song, H. Boo and T. D. Chung, *The Journal of Physical Chemistry C*, 2010, **114**, 8721-8726.
- 12. Y. H. Kim, G. H. Kim, N. S. Baek, Y. H. Han, A.-Y. Kim, M.-A. Chung and S.-D. Jung, *J. Micromech. Microeng.*, 2013, **23**, 097001.
- Y. Lu, H. Lyu, A. G. Richardson, T. H. Lucas and D. Kuzum, *Sci. Rep.*, 2016, 6, 1-9.
- 14. K. Wang, H. A. Fishman, H. Dai and J. S. Harris, *Nano Lett.*, 2006, **6**, 2043-2048.
- 15. F. Vitale, S. R. Summerson, B. Aazhang, C. Kemere and M. Pasquali, ACS Nano, 2015, 9, 4465-4474.
- R. Gerwig, K. Fuchsberger, B. Schroeppel, G. Link, G. Heusel, U. Kraushaar, W. Schuhmann, A. Stett and M. Stelzle, *Front. Neuroeng.*, 2012, 5.
- 17. N. Chen, B. Luo, A. C. Patil, J. Wang, G. G. L. Gammad, Z. Yi, X. Liu, S. C. Yen, S. Ramakrishna and N. V. Thakor, *ACS Nano*, 2020, **14**, 8059-8073.
- R. Gerwig, K. Fuchsberger, B. Schroeppel, G. S. Link, G. Heusel, U. Kraushaar, W. Schuhmann, A. Stett and M. Stelzle, *Front. Neuroeng.*, 2012, 5, 8.
- S. Venkatraman, J. Hendricks, Z. A. King, A. J. Sereno, S. Richardson-Burns, D. Martin and J. M. Carmena, *IEEE Trans. Neural Syst. Rehabil. Eng.*, 2011, 19, 307-316.
- 20. Y. Lu, T. Li, X. Zhao, M. Li, Y. Cao, H. Yang and Y. Y. Duan, *Biomaterials*, 2010, **31**, 5169-5181.

- 21. J. Luo, Y. Xing, C. Sun, L. Fan, H. Shi, Q. Zhang, Y. Li, C. Hou and H. Wang, *Chem. Eng. J.*, 2022, **427**, 130886.
- 22. A. R. Spencer, A. Primbetova, A. N. Koppes, R. A. Koppes, H. Fenniri and N. Annabi, *ACS Biomater. Sci. Eng.*, 2018, 4, 1558-1567.
- 23. L. Pan, P. Cai, L. Mei, Y. Cheng, Y. Zeng, M. Wang, T. Wang, Y. Jiang, B. Ji, D. Li and X. Chen, *Adv. Mater.*, 2020, **32**, 2003723.