Noble-Metal-Free Cobalt Phosphide to Boost the Photocatalytic

Overall Water Splitting Activity of SrTiO₃(Al)

Shangchun Lv^a, Mengxi Pei^a, Yuxiang Liu^{a,b}, Zhichun Si^{a,*}, Xiaodong Wu^{b,*}, Rui Ran^b, Duan Weng^{a,b} Feiyu Kang^{a,b,*}

^a International Graduate School at Shenzhen, Tsinghua University, Shenzhen City,

518055, China

^b The Key Laboratory of Advanced Materials of Ministry of Education, School of

Materials Science and Engineering, Tsinghua University, Beijing City, 100084, China

* Corresponding Authors: <u>si.zhichun@sz.tsinghua.edu.cn;</u> <u>wuxiaodong@tsinghua.edu.cn;</u> fykang@sz.tsinghua.edu.cn

Results

Fig. S1 XRD patterns of pristine (red) and used (black) catalysts

Fig. S2 SEM image of (a)SrTiO₃(AI) and (b)Co_xP/SrTiO₃(AI)

Fig. S3 TEM image of Co_xP/SrTiO₃(AI) after four times reaction

Fig. S5 HRTEM image of Co_xP nanoparticles

Fig. S7 TRPL spectra of (a) SrTiO₃(Al) and (b) Co_xP/SrTiO₃(Al) fitting by single exponential

functions

Table 1 Various SrTiO₃-based composites for photocatalytic overall water splitting.

Photocatalysts	Light source	H ₂ evolution rate (μmol·g ⁻ ¹ ·h ⁻¹)	O ₂ evolution rate (μmol·g ⁻ ¹ ·h ⁻¹)	Ref.
Co _x P/SrTiO₃(Al)	280 W Xe lamp, full arc	1360	638	This work
Ni SA- NG/SrTiO₃(AI)/CoO _x	280 W Xe lamp, full arc	498	250	[1]
Ni SA- NG/SrTiO ₃ (Al)/CoO _x	280 W Xe lamp, full arc	498	250	[2]
Ni@NiO _x -SrTiO₃	1.5 AM solar simulator	18	7.2	[3]
Rh/Cr ₂ O ₃ -SrTiO ₃ :Al- CoO _x	300 W Xe lamp, full arc	4 mmol/h 2 mmol/h		[4]
Rh _{2-y} Cr _y O ₃ -SrTiO ₃ :Al	Xe lamp, 240 mW/cm ² , full arc	530 265		[5]

Table 2 Energy structure parameters of SrTiO₃(AI) and Co_xP ^a

Samples	E _{sc} (eV)	Е _{номо} (eV)	lon potential (eV)	VBM (V vs. SHE)	CBM (V vs. SHE)
SrTiO ₃ (Al)	17.75	3.93	7.7	2.96	-0.3
Co _x P	-	-	-	-	-0.26

^a: The E_{SC}, E_{HOMO}, ion potential and VBM values are determined by UPS spectra. The CBM values

are determined by Mott-Schottky plots.

References

[32] Yuxiang Liu , Xuejun Xu, Sufan Zheng, Shangchun Lv , et al. Ni Single Atoms Anchored on Nitrogen-Doped Graphene as H_2 -Evolution Cocatalyst of SrTiO₃ (Al)/CoO_x for Photocatalytic Overall Water Splitting[J]. Carbon, 2021: 763-773.

[33] Yuxiang Liu , Xuejun Xu, Shangchun Lv, Hewen Li, Zhichun Si, Xiaodong Wu, Rui Ran, Duan Weng. Nitrogen doped graphene quantum dots as a cocatalyst of $SrTiO_3(AI)/CoO_x$ for photocatalytic overall water splitting[J]. Catalysis Science & Technology, 2021, 11: 3039-3046.

[34] Kai H , Kreuger T , Mei B , et al. Transient Behavior of Ni@NiO_x Functionalized SrTiO₃ in Overall Water Splitting[J]. Acs Catalysis, 2017, 7(3): 1610-1614.

[35] Yoshinaga T, Saruyama M, Xiong A, et al. Boosting Photocatalytic Overall Water Splitting by Co doping into Mn_3O_4 Nanoparticles as Oxygen Evolution Cocatalyst[J]. Nanoscale, 2018, 10(22): 10420-10427.

[36] Jj A, Kk B, Hf A, et al. Investigation on the highly active SrTiO₃ photocatalyst toward overall H₂O splitting by doping Naion[J]. Journal of Catalysis, 2020, 390: 81-89.