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Normal stress profiles under surface nanobubbles

Fig. S1 (a) Distribution of (left) the stress tangential to and normal to the solid-gas 

interface  and , where the fluid-fluid and fluid-wall interactions are 𝜏𝑡(𝑧) 𝜏𝑓𝑓 + 𝑓𝑤
𝑛 (𝑧)

denoted by the subscripts “ff” and “fw” respectively, and (right) the N2 density . 
𝜌𝑁2

 shows correlations with the distribution of , while  is independent of 𝜏𝑡(𝑧) 𝜌𝑁2 𝜏𝑓𝑓 + 𝑓𝑤
𝑛 (𝑧)

that and a constant equivalent to the bulk stress , namely the bulk gas pressure with 𝜏𝑏𝑙𝑘

inverted sign ( ), even inside the adsorbed layers. Therefore, the internal pressure ‒ 𝑃𝑔𝑎𝑠

of surface nanobubbles can be estimated from the normal stress working on the graphite. 
These distributions correspond to the system for the water-N2 molecule interfacial tension 

with  for  shown in Fig. S10(b). Here, the origin of the vertical axis is 
𝑁𝑁2

= 200 𝜂 = 1.0

defined as the position where  starts to have non-zero values. (b) Profiles of the 𝜏𝑡(𝑧)



3

normal stress working on the bottom graphite in the cases of (left column) η = 1.0 and 

(right column) η = 1.5. Nanobubbles are composed of  = 400, 250, and 150 (from the 
𝑁𝑁2

top). The average stress under the nanobubble is assumed as the pressure with inverted 

sign .‒ 𝑃𝑔𝑎𝑠

Peak density of gas molecules inside N2 molecule-adsorbed layers

Fig. S2 Peak density inside N2-adsorbed layers under surface nanobubbles vs. the 

corresponding pressure . Circle (red) and square (blue) points correspond to the 𝑃𝑔𝑎𝑠

results of η = 1.0 and 1.5, respectively.
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Breakdown of Young’s equation for the case of  = 100 and  = 1.0.
𝑁𝑁2 𝜂

Fig. S3 (a) Density distribution of a nanobubble with  = 100 and  = 1.0 and (b) 
𝑁𝑁2 𝜂

contact angles of  and  estimated by Young’s equation (Eq. (1) in the main 𝜃𝑌 𝜃𝑎𝑝𝑝

manuscript) and apparent shape of the nanobubbles for the cases of  = 400, 300, 250, 
𝑁𝑁2

200, 150, and 100 with  = 1.0.𝜂
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Calculation of the contact angles of semispherical submicron-sized bubbles

Fig. S4 (a)  and (b)  as a function of a wide range of bulk N2 density values 𝛾𝐿𝐺 𝛾𝑆𝐺 ‒ 𝛾𝑆0

. Circle (red) and square (blue) points correspond to the results of η = 1.0 and 1.5, 
𝜌𝑏𝑙𝑘

𝑁2

respectively. The red dashed line indicates the value of  N/m. 𝛾𝐿𝑉 = 53.9 ± 0.4 × 10 ‒ 3

To estimate the contact angles  of the submicron-sized nanobubbles, we calculated 𝜃𝑌

 for a wide range of the pressure  (shown in Figure 4(a) in the main 𝛾𝑆𝐺 ‒ 𝛾𝑆0 𝑃𝑔𝑎𝑠

manuscript) and corresponding bulk N2 density  (Figure S4(b)) by using the system 
𝜌𝑏𝑙𝑘

𝑁2

shown in Figure S10(b). We can see that  approaches zero as  decreases for 𝛾𝑆𝐺 ‒ 𝛾𝑆0
𝜌𝑏𝑙𝑘

𝑁2
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both η = 1.0 and 1.5. By substituting  and  for a wide range of  (Figure 𝛾𝐿𝐺 𝛾𝑆𝐺 ‒ 𝛾𝑆0
𝜌𝑏𝑙𝑘

𝑁2

S4(a, b)) into Eq. (1) in the main manuscript, plots of  as functions of  and 𝜃𝑌
𝜌𝑏𝑙𝑘

𝑁2

corresponding  are obtained as shown in Figure S5(a, b).𝑃𝑔𝑎𝑠

Fig. S5  estimated by Eq. (1) in the main manuscript as functions of (a) bulk N2 density 𝜃𝑌

 and (b) the corresponding pressure . Circle (red) and square (blue) points 
𝜌𝑏𝑙𝑘

𝑁2 𝑃𝑔𝑎𝑠

correspond to the results of η = 1.0 and 1.5, respectively.
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Next, we calculated the radius of curvature of semispherical nanobubbles  𝑟3𝐷

corresponding to . Figure S6 shows the relationships between  and . As 𝑃𝑔𝑎𝑠 𝑃𝑔𝑎𝑠
𝜌𝑏𝑙𝑘

𝑁2

 increases, because the frequency of collisions among N2 molecules increases, the 
𝜌𝑏𝑙𝑘

𝑁2

deviation of the inner pressure from the ideal gas law  becomes large. 
𝑃𝑔𝑎𝑠 = 𝜌𝑏𝑙𝑘

𝑁2
𝑅𝑔𝑐𝑇

Here  J/(kg*K) is a gas constant for nitrogen. In contrast, the pressure 𝑅𝑔𝑐 = 296.8

calculated through the Young-Laplace equation for quasi-two-dimensional nanobubbles 

 agreed very well with the pressure of the nanobubbles obtained from the 
𝑃𝑔𝑎𝑠 = 𝑃0 +

𝛾𝐿𝐺

𝑟2𝐷

normal stress working on the bottom graphite (shown in Figure S1). Here,  was 𝑟2𝐷

calculated by least-squares circular fitting to a contour of the liquid-gas interface. 
Therefore, it can be considered that the Young-Laplace equation is applicable to surface 
nanobubbles with a wide range of size.

Fig. S6 Pressure  vs. the corresponding bulk N2 density . Circle (red) and square 𝑃𝑔𝑎𝑠
𝜌𝑏𝑙𝑘

𝑁2

(blue) points correspond to the pressure of η = 1.0 and 1.5, respectively. Triangle (green) 
points indicate the pressure obtained by the Young-Laplace equation for quasi-2D 

nanobubbles . The (pink) line indicates the pressure estimated by ideal 
𝑃𝑔𝑎𝑠 = 𝑃0 +

𝛾𝐿𝐺

𝑟2𝐷

gas law .
𝑃𝑔𝑎𝑠 = 𝜌𝑏𝑙𝑘

𝑁2
𝑅𝑔𝑐𝑇
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Thus, by applying the Young-Laplace equation for semispherical nanobubbles 

 and the footprint radius  to the relationship between 
𝑃𝑔𝑎𝑠 = 𝑃0 +

𝛾𝐿𝐺

𝑟3𝐷 𝑅𝐹𝑃 = 𝑟3𝐷sin 𝜃𝑌

 and  (Figure S5(b)), we could obtain the relationship between  and  as 𝜃𝑌 𝑃𝑔𝑎𝑠 𝜃𝑌 𝑅𝐹𝑃

shown in Figure 4(b) in the main manuscript. Here, the line tension was assumed to be 
negligible because its typical value is about 10-12 to 10-10 J/m1,2 and is sufficiently small.

Bulk N2 density inside nanobubbles estimated using eqn (4) in the main 
manuscript 

Fig. S7 Bulk N2 density  inside nanobubbles estimated by Eq. (4) in the main 
𝜌𝑏𝑙𝑘

𝑁2

manuscript as a function of footprint radius  for different contact angles. The pink  𝑅𝐹𝑃

dashed line indicates the nitrogen density under atmospheric pressure (1.14 kg/m3). The 
gas density with a contact angle of 90° corresponds to that inside bulk nanobubbles, in 
which the footprint radius in the horizontal axis is read as the radius of curvature.
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Density distributions of N2 molecules in nanobubble systems 

Fig. S8 Density distributions of N2 molecules with a small range of N2 density in the cases 

of = 400, 250, and 150 (from the top) with (left column) η = 1.0 and (right column) 
𝑁𝑁2

1.5. In all cases, the dissolved N2 concentration is above 1.0 kg/m3 almost in all regions.
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Density distributions of water molecules in nanobubble systems 

Fig. S9 Density distributions of water in the systems of  = 400, 250, and 150 (from 
𝑁𝑁2

the top) with  = 1.0 and 1.5.𝜂
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Systems used for the calculation of interfacial tensions 

Fig. S10 (a) Simulation systems for the calculation of (left) the water-vapor and (right) 

the water-N2 molecule interfacial tensions  and , respectively. The z-length of the 𝛾𝐿𝑉 𝛾𝐿𝐺

right system was controlled to give the corresponding N2 density. (b) Simulation system 
for the calculation of the solid-gas interfacial tension relative to the solid-vacuum 

interfacial tension . Time average was taken for 20 ns after 10 ns equilibration 𝛾𝑆𝐺 ‒ 𝛾𝑆0

in the systems of (a) and 100 ns after 150 ns equilibration in the systems of (b). (c) 

Distribution of the fluid stress tangential to the solid/gas interface , where green 𝜏𝑡(𝑧)

dashed line indicates . 𝜏𝑏𝑙𝑘 =‒ 𝑃𝑔𝑎𝑠

In the first system of Figure S10(a), 5300 water molecules were confined in a 
simulation cell of 4.0  4.0  60.0 nm3 with the periodic boundary condition imposed in 
all directions. In the second system, 5300 water and 2200-3900 N2 molecules were 
confined. Here, the Nosé–Hoover barostat was used to keep the average surface normal 

pressure in the z-direction  at the same value of the pressure inside surface 𝑃𝑧𝑧

nanobubbles  that was obtained in Figure S1, i.e., the N2 density in the system should 𝑃𝑔𝑎𝑠

be the same as that of the nanobubbles. 
In the system of Figure S10(b), the carbon atoms constituting the graphite were fixed 

onto the space, while the upper graphene worked as a piston to control the system 

pressure. By applying the same pressures as that inside the nanobubbles , the 𝑃𝑔𝑎𝑠

graphite-N2 interfaces similar to the ones under the nanobubbles were constructed. The 

distributions of the fluid stress tangential to the solid-gas interface  and bulk stress 𝜏𝑡(𝑧)

 as a function of the normal position z near the solid-gas interface in the case of  𝜏𝑏𝑙𝑘
𝑁𝑁2

= 200 for  = 1.0 is shown in Figure S10(c) as an example.𝜂
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Fig. S11 (a) Schematics of the TI for the calculation of the solid-liquid work of adhesion 

. 6000 water molecules were put on the graphite in a simulation cell of 4.18  4.25  𝑊𝑆𝐿

20.0 nm3. Pink dashed line represents the positions of phantom wall repulsively 
interacting only with the water molecules. The periodic boundary conditions were 
employed in the horizontal directions. Time average was taken for 0.5 ns after 0.1 ns 
equilibration for each system. (b) Force per unit area exerted by the phantom wall on 

liquid . The pink area corresponds to the quantitative value of the solid-liquid 〈𝑓𝑤(𝑧𝑤)〉/𝐴

work of adhesion  = 71.2 ± 0.6  N/m. 𝑊𝑆𝐿 × 10 ‒ 3
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