Electronic supplementary information

Dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries

Yu-Ting Xu,[†] Meng-Jie Chen,[†] Hong-Rui Wang, Chun-Jiao Zhou, Qiang Ma, Qi Deng, Xiong-Wei Wu and Xian-Xiang Zeng*

Hunan Agricultural University, School of Chemistry and Materials Science, Nongda Road 1, Furong District, Changsha, Hunan 410128, P.R. China

To whom correspondence should be addressed. E-mail: xxzeng@hunau.edu.cn

[†] These authors contributed equally to this work.

Fig. S1 (a) Cyclic voltammetry curves of $V_2O_5@CC$ at different scan rates and (b) corresponding relationship of peak current versus square root of scan rate.

Fig. S2 (a) The charge/discharge profiles at 0.3, 0.6, 1.2, 2.4, 4.8, 10 A g⁻¹ for $V_2O_5@CC/Zn$ cell.

Fig. S3 Long-term cycling performance for $V_2O_5@CC/Zn$ cell.

Fig. S4 SEM images of PPy@V₂O₅@CC cathode with different amount of V₂O₅ loading by controlling the amount of V₂O₅ precursor (a, b: 0.9 g) and (d, e: 0.72 g), and corresponding (c: 0.9 g: and f: 0.72 g) electrochemical performance curves for PPy@V₂O₅@CC cathode at 0.3 A g⁻¹.

Fig. S5 XPS plots of C 1s (a) and O 1s (b) for $PPy@V_2O_5@CC$ cathode at primary state, fully discharging state (0.2 V) and full charging state (1.6 V).