Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

for

Norbornane-based covalent organic frameworks for gas separation

Sushil Kumar,^{a‡} Mahmoud A. Abdulhamid,^{a‡} A. D. Dinga Wonanke,^b Matthew A. Addicoat,^b, and Gyorgy Szekely *^a

^aAdvanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

^b School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.

Table of Contents

Section S1: Synthetic Procedures	3
Section S2: NMR characterizations of diamines	4
Section S3: PXRD simulation, Pawley refinement and fractional atomic coordinates of the as- synthesized COFs	6
Section S4: FTIR spectroscopic characterizations of as-synthesized COFs	29
Section S5: XPS profiles of as-synthesized COFs	31
Section S6: Thermal gravimetric analysis of as-synthesized COFs	33
Section S7: Analysis of nitrogen gas uptake BET isotherms and pore size distribution of ND-COFs	34
Section S8: Stability investigation of as-synthesized COFs	37
Section S9: References	42

Section S1: Synthetic Procedures

Synthesis of CANAL(Me)₂. To a dry glass pressure flask (15 ml), 4-bromo-3-methylaniline (353.4 mg, 1.9 mmol), PPh₃ (20 mg, 0.076 mmol), Pd(OAc)₂ (8.55 mg, 0.038 mmol), Cs₂CO₃ (618 mg, 1.9 mmol), norbornadiene (430 mg, 4.56 mmol), and 2 mL of 1,4-dioxane were added under inert atmosphere. The flask was sealed with a Teflon cap, and the mixture was stirred at 150 °C for 24 h. The mixture was then cooled to room temperature, passed through Celite to remove inorganic solvents. The filtered solution was then concentrated by rotavap, and the obtained crude product was washed three times with methanol prior to silica column purification (dichloromethane/hexane: 1/1). The obtained solid was dried under vacuum to obtain CANAL(Me)₂ (275 mg, 72% yield). ¹H NMR (400 MHz, DMSO-d₆, δ): 0.65 (s, 2H), 1.98 (m, 6H), 3.0 (m, 4H), 4.73 (br s, 4H), 6.06 (s, 2H), 6.17 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆, δ): 17.1, 24.6, 36.6, 36.7, 47.4, 48, 105.7, 114.5, 131.9, 132.1, 146, 146.2, 149.1, 149.2. ESI-MS m/z Calcd for [C₂₁H₂₃N₂]⁺ [M+H⁺]: 303.1783; found: 303.2027.

Synthesis of CANAL(Me)4. To a dry glass pressure flask (15 ml), 4-bromo-2,5-dimethylaniline (200 mg, 1.0 mmol), PPh₃ (10 mg, 0.04 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), Cs₂CO₃ (325 mg, 1.0 mmol), norbornadiene (0.05 ml, 0.5 mmol), and 1 mL of 1,4-dioxane were added under inert atmosphere. The flask was sealed with a Teflon cap, and the mixture was stirred at 150 °C for 24 h. The mixture was then cooled to room temperature, passed through Celite to remove inorganic solvents. The filtered solution was then concentrated by rotavap, and the obtained crude product was washed three times with methanol prior to silica column purification (dichloromethane/hexane: 1/1). The obtained solid was dried under vacuum to obtain CANAL(Me)₄ (140 mg, 75% yield). ¹H NMR (400 MHz, DMSO-d₆, δ): 0.60 (s, 2H), 1.91 (s, 6H), 2.02 (s, 6H), 2.13-2.21 (m, 2H), 3.02 (m, 4H), 4.26 (br s, 4H), 6.46 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆, δ): 12.5, 12.6, 19, 26.4, 36, 36.9, 37.9, 47.5, 47.6, 47.7, 47.9, 11.6, 120.65, 121.4, 132.9, 142.8, 142.9, 143.9. ESI-MS m/z Calcd for [C₂₃H₂₇N₂]⁺ [M+H⁺]: 331.2130; found: 331.2082.

General procedure for the synthesis of covalent organic frameworks (COFs). The COFs were synthesized following method reported in the literature.² In a typical synthesis, a pyrex tube (outer diameter x inner diameter = 20 mm x 18 mm, and length 25 cm) is charged with the 0.3 mmol of **Tp**, 0.45 mmol of corresponding diamine in 3 mL of mixture of mesitylene and 1,4-dioxane (1:1, v/v), and 0.4 mL of acetic acid. After sonication for 15 minutes, the mixture was subjected to three consecutive freeze-pump-thaw cycles under liquid nitrogen (77K). The pyrex tube was sealed under 1 mbar vacuum and heated in an oven maintained at 120 °C for 72 h. The resulted solid material was then purified by immersing in hot water followed by solvent exchange hot N,N-dimethylacetamide for several days. After washing with water and acetone, the obtained COFs were dried at 100 °C in a vacuum oven to isolate crystalline porous COFs.

Section S2: NMR characterizations of diamines

Figure S1. ¹H NMR spectrum of CANAL(Me)₂ recorded in DMSO-d₆.

Figure S2. ¹³C NMR spectrum of CANAL(Me)₂ recorded in DMSO-d₆.

Figure S3. ¹H NMR spectrum of CANAL (Me)₄ recorded in DMSO-d₆.

Figure S4. ¹³C NMR spectrum of CANAL(Me)₄ recorded in DMSO-d₆.

Section S3: PXRD simulation, Pawley refinement and fractional atomic coordinates of the as-synthesized COFs

For each COF, the monolayer structures were optimized using DFTB+ version 19.1 [10.1021/jp070186p] using the Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) method, including Lennard-Jones dispersion. C, N, O and H atoms were described using the mio-0-1 parameter set [DOI: 10.1103/PhysRevB.58.7260]. From the optimized monolayers, AA (eclipsed), AB (staggered) and ABC structures were generated as bilayers of each monolayer.

Figure S5. Simulated PXRD pattern of ND-COF-1 showing *d*-spacing for AA stacking model.

Figure S6. Simulated PXRD pattern of ND-COF-1 showing *hkl* values for AA stacking model.

Figure S7. Simulated PXRD pattern of ND-COF-1 showing *d*-spacing values for the AB model.

Figure S8. Simulated PXRD pattern of ND-COF-1 showing *hkl* values for AB model.

Figure S9. Full image of PXRD pattern simulated for the ND-COF-1 where linkers can point up or down relative to the connectors.

Figure S10. Magnified image of the PXRD pattern simulated for the ND-COF-1 with layer-mismatch stacking.

Figure S11. Pawley refinement for ND-COF-1. Pawley refinement suggests that the simulated (blue) and experimental (red) PXRD patterns are in good agreement. The black line denotes the refinement difference, and green lines denote observed reflections.

	ND-COF-1 in ABC stacking model												
a = 30.07 Å , b = 32.35 Å, c = 12.96 Å, α = 92.62°, β = 88.24°, γ = 117.73°													
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z		
C1	0.45884	0.51376	0.82922	C47	0.5542	1.02463	0.78146	C7	0.79213	0.18041	0.49658		
C2	0.48503	0.94343	0.82224	C48	-0.02456	0.52967	0.78137	C8	0.81962	0.61176	0.4965		
C3	0.05658	0.5416	0.82219	C4	0.12557	0.84727	0.16295	С9	0.38824	0.20777	0.49604		
C10	0.45547	0.46836	0.87324	C5	0.15288	0.27842	0.16272	C16	0.78883	0.13502	0.54047		
C11	0.53213	0.98591	0.87026	C6	0.72172	0.87444	0.16298	C17	0.865	0.65384	0.54043		
C12	0.01415	0.54631	0.87016	C13	0.12222	0.80191	0.20716	C18	0.3462	0.21114	0.54002		
C19	0.53127	0.51651	0.87181	C14	0.19829	0.32046	0.2067	C25	0.86461	0.18321	0.53881		
C20	0.48257	0.01507	0.86876	C15	0.67968	0.87776	0.20715	C26	0.81681	0.68143	0.53879		
C21	0.98489	0.4675	0.86862	C22	0.19801	0.85007	0.20556	C27	0.31857	0.13535	0.53866		
C28	0.51306	0.54872	0.8301	C23	0.15012	0.34809	0.20536	C34	0.84634	0.21538	0.49725		
C29	0.45015	0.96326	0.82291	C24	0.65207	0.80197	0.20543	C35	0.78464	0.631	0.49718		
C30	0.03671	0.48689	0.82286	C31	0.17978	0.88223	0.16372	C36	0.36898	0.15355	0.49697		
C37	0.49496	0.4863	0.95318	C32	0.11792	0.29768	0.16365	C43	0.82837	0.15297	0.62027		
C38	0.51352	0.0082	0.95013	C33	0.70248	0.82023	0.16368	C44	0.84704	0.67541	0.62024		
C39	0.99178	0.50536	0.95026	C40	0.16173	0.81992	0.28705	C45	0.32466	0.17168	0.61999		
C46	0.47106	0.44582	0.78914	C41	0.18036	0.34199	0.28668	C52	0.80438	0.1125	0.45622		
C47	0.5542	0.02463	0.78146	C42	0.65816	0.83822	0.28696	C53	0.88753	0.69193	0.45621		
C48	0.97544	0.52967	0.78137	C49	0.13778	0.77928	0.12319	C54	0.30807	0.19554	0.45591		

Table S1. Fractional	atomic coordinates	for the unit	cell of ND-COF-1.

									1		
C55	0.52551	0.48093	0.78682	C50	0.22081	0.3586	0.12259	C61	0.85882	0.14764	0.45378
C56	0.51924	0.04459	0.77931	C51	0.64153	0.86222	0.12312	C62	0.85238	0.71123	0.45378
C57	0.9554	0.47474	0.77922	C58	0.19223	0.81442	0.12075	C63	0.28874	0.14109	0.45365
C64	0.48084	0.40626	0.81577	C59	0.18569	0.37792	0.12036	C70	0.81426	0.07299	0.48267
C65	0.59374	0.07459	0.81398	C60	0.62222	0.80778	0.12057	C71	0.92704	0.74132	0.48269
C66	0.92553	0.51935	0.81393	C67	0.14764	0.73979	0.15005	C72	0.25871	0.18571	0.4825
C73	0.46017	0.35834	0.77845	C68	0.26035	0.40796	0.14919	C79	0.79365	0.02507	0.44529
C74	0.64191	0.10255	0.77904	C69	0.59217	0.85235	0.14991	C80	0.97495	0.76862	0.4453
C75	0.89764	0.53965	0.77903	C76	0.12702	0.69181	0.1131	C81	0.23141	0.20632	0.44511
C82	0.49236	0.34127	0.75251	C77	0.30825	0.43527	0.11175	C88	0.82589	0.00807	0.4193
C83	0.6589	0.15195	0.75487	C78	0.56483	0.873	0.11298	C89	0.99195	0.81785	0.41928
C84	0.84823	0.50732	0.75486	C85	0.15925	0.67476	0.08745	C90	0.18216	0.17409	0.41918
C91	0.54318	0.37446	0.74754	C86	0.32526	0.48451	0.08582	C97	0.8767	0.04132	0.41434
C92	0.62576	0.16963	0.74941	C87	0.51557	0.84079	0.08717	C98	0.95871	0.83542	0.41432
C93	0.83045	0.45648	0.74939	C94	0.21007	0.708	0.08244	C99	0.16457	0.12328	0.4143
C100	0.56159	0.42415	0.76953	C95	0.29202	0.50209	0.08101	C106	0.89505	0.09099	0.43638
C101	0.57592	0.13847	0.76998	C96	0.49799	0.78998	0.08197	C107	0.90904	0.8041	0.43639
C102	0.86153	0.43771	0.76994	C103	0.22842	0.7577	0.10407	C108	0.19588	0.10491	0.43642
C109	0.52974	0.43792	0.81121	C104	0.24236	0.47078	0.10319	C115	0.86315	0.10469	0.47811
C110	0.56155	0.0926	0.81057	C105	0.52933	0.7716	0.10359	C116	0.89534	0.7585	0.47813
C111	0.90743	0.46913	0.8105	C112	0.19652	0.77148	0.14544	C117	0.2415	0.13682	0.47806
C118	0.42198	0.56511	0.88767	C113	0.22866	0.42516	0.14479	C124	0.75533	0.2318	0.55544
C119	0.43438	0.85575	0.88891	C114	0.57497	0.80347	0.14515	C125	0.76823	0.52356	0.55519
C120	0.14424	0.5786	0.8889	C121	0.08879	0.89875	0.2213	C126	0.47646	0.24457	0.55457
C127	0.45509	0.54885	0.89851	C122	0.10145	0.19019	0.22124	C133	0.78845	0.21551	0.566
C128	0.45122	0.90524	0.89781	C123	0.80996	0.91122	0.22141	C134	0.7845	0.57295	0.56587
C129	0.09474	0.54596	0.8978	C130	0.12188	0.88245	0.23211	C135	0.42707	0.21149	0.56536
C136	0.50431	0.58066	0.90133	C131	0.11776	0.23959	0.23203	C142	0.83767	0.24733	0.56858
C137	0.41881	0.92331	0.89997	C132	0.76057	0.87812	0.23218	C143	0.75268	0.59035	0.56847
C138	0.07665	0.49548	0.89996	C139	0.1711	0.91424	0.23486	C144	0.40964	0.16226	0.56822
C145	0.52332	0.6312	0.89405	C140	0.08596	0.25702	0.23489	C151	0.85669	0.29787	0.56128
C146	0.36831	0.8916	0.89553	C141	0.74315	0.8289	0.23488	C152	0.70215	0.55884	0.56107
C147	0.10835	0.47667	0.89549	C148	0.19016	0.96478	0.22755	C153	0.44113	0.14321	0.56102
C154	0.49025	0.64875	0.89098	C149	0.03542	0.22553	0.22767	C160	0.82363	0.31542	0.55845
C155	0.35087	0.84101	0.89423	C150	0.77465	0.80986	0.22756	C161	0.6846	0.50822	0.55805
C156	0.15895	0.50982	0.89406	C157	0.15711	0.98237	0.22458	C162	0.49176	0.17626	0.55804
C163	0.43945	0.61548	0.8852	C158	0.01783	0.1749	0.22468	C169	0.77282	0.28217	0.55293
C164	0.38394	0.82323	0.88801	C159	0.82527	0.84292	0.22462	C170	0.71786	0.49067	0.5525
C165	0.17674	0.56066	0.88785	C166	0.10631	0.94913	0.21888	C171	0.50933	0.22706	0.55225
C172	0.57722	0.66565	0.8866	C167	0.05107	0.15733	0.2189	C178	0.91059	0.33229	0.55343
C173	0.33363	0.91079	0.88851	C168	0.84283	0.89372	0.21896	C179	0.66772	0.57831	0.55334
C174	0.08914	0.4228	0.88856	C175	0.24407	0.99919	0.22	C180	0.42164	0.0893	0.55353
C181	0.40601	0.32685	0.76577	C176	0.00102	0.24504	0.22013	C187	0.73951	-0.00646	0.43252
C182	0.67369	0.08024	0.76596	C177	0.75516	0.75596	0.21998	C188	1.00648	0.746	0.43255
C183	0.92005	0.59375	0.76599	C184	0.07287	0.66025	0.10054	C189	0.25403	0.26047	0.43231
C190	0.37997	0.66859	0.7331	C185	0.33979	0.41266	0.09894	C196	0.71351	0.33508	0.39986
C191	0.33098	0.71141	0.73456	C186	0.58743	0.92716	0.10061	C197	0.66495	0.37831	0.39966
C192	0.28823	0.61965	0.73348	C193	0.04688	1.00196	0.06592	C198	0.62171	0.2865	0.39963
C199	0.37803	0.71341	0.71279	C194	0.99817	1.04504	0.06604	C205	0.71184	0.37994	0.37823
C200	0.28626	0.66478	0.71268	C195	0.95508	0.95323	0.06602	C206	0.62008	0.33177	0.37819

C201	0.33484	0.62165	0.71105	C202	0.0451	1.04677	0.04446	C207	0.66827	0.28818	0.37829
01	0.41551	0.75258	0.69872	C203	0.95334	0.99844	0.04465	07	0.74942	0.41892	0.36338
02	0.24711	0.66313	0.69865	C204	1.00167	0.95501	0.04446	08	0.58109	0.33036	0.36337
03	0.33644	0.58421	0.6955	04	0.08264	1.0858	0.02969	09	0.6697	0.25061	0.36358
C208	0.41506	0.67101	0.79695	05	0.9143	0.99695	0.03002	C214	0.74851	0.3376	0.46417
C209	0.32826	0.74364	0.79933	O 6	1.00317	0.91747	0.02973	C215	0.66246	0.4109	0.46368
C210	0.25614	0.58463	0.79832	C211	0.08195	1.00453	0.13006	C216	0.58911	0.25141	0.46361
N1	0.40511	0.63134	0.86657	C212	0.99563	1.07756	0.13017	N7	0.73852	0.29807	0.53426
N2	0.36758	0.77288	0.87013	C213	0.92258	0.91813	0.13011	N8	0.70198	0.44048	0.53376
N3	0.22708	0.59463	0.86986	N4	0.07202	0.96505	0.20026	N9	0.55954	0.26136	0.53367
C217	0.61693	0.32646	0.82117	N5	0.03514	0.10712	0.20028	C223	0.9507	-0.0069	0.48616
C218	0.67358	0.29151	0.82251	N6	0.89304	0.92803	0.20037	C224	0.0069	-0.04238	0.48614
C219	0.70851	0.38309	0.82253	C220	0.28408	0.65968	0.15425	C225	0.04239	0.0493	0.48616
C226	0.62409	0.28452	0.839	C221	0.34028	0.62419	0.15331	C232	0.95759	-0.04903	0.50345
C227	0.71544	0.34064	0.84043	C222	0.37579	0.71588	0.15409	C233	0.04903	0.00664	0.50348
C228	0.65932	0.37588	0.83916	C229	0.29099	0.61753	0.17101	C234	-0.00664	0.04241	0.50349
010	0.58933	0.24414	0.85943	C230	0.38242	0.67318	0.17088	016	0.92278	-0.08927	0.5246
011	0.75578	0.34635	0.86172	C231	0.32677	0.70897	0.17161	017	0.08927	0.01207	0.52466
012	0.65356	0.41055	0.85968	013	0.25618	0.57725	0.19197	018	-0.01207	0.07722	0.52469
C235	0.57638	0.31965	0.77228	014	0.42266	0.67856	0.19186	C241	0.90998	-0.01348	0.4385
C236	0.68058	0.25769	0.77462	015	0.32136	0.74379	0.19295	C242	0.01349	-0.07651	0.43846
C237	0.74242	0.42369	0.77416	C238	0.24331	0.65316	0.10695	C243	0.07651	0.09001	0.43846
N10	0.57607	0.35861	0.71572	C239	0.34685	0.59014	0.10519	N16	0.90965	0.02557	0.38237
N11	0.64185	0.21843	0.71756	C240	0.40995	0.75668	0.10673	N17	0.97446	0.88412	0.38231
N12	0.78161	0.42385	0.71762	N13	0.24303	0.69221	0.05074	N18	0.11587	0.09034	0.38231
H1	0.43943	0.50798	0.7546	N14	0.30777	0.5508	0.04909	H7	0.77264	0.17462	0.42207
H2	0.4888	0.92911	0.74416	N15	0.44925	0.75706	0.0502	H8	0.82541	0.59808	0.42197
H3	0.07093	0.55969	0.74412	H4	0.10612	0.84144	0.08837	Н9	0.40189	0.22718	0.42143
H10	0.41949	0.44314	0.90389	H5	0.15864	0.26477	0.08811	H16	0.75287	0.10977	0.57122
H11	0.55785	0.97494	0.90292	H6	0.73535	0.89391	0.08843	H17	0.89024	0.64312	0.57118
H12	0.02516	0.58303	0.90274	H13	0.08624	0.77671	0.23788	H18	0.35697	0.24713	0.57062
H19	0.56845	0.53715	0.90078	H14	0.22352	0.3097	0.23729	H25	0.90181	0.20387	0.56767
H20	0.46181	0.03222	0.89994	H15	0.69044	0.91372	0.23793	H26	0.79614	0.69796	0.56766
H21	0.9677	0.42958	0.89969	H22	0.2352	0.87074	0.23446	H27	0.30203	0.09818	0.56768
H28	0.5304	0.56667	0.7561	H23	0.12949	0.36462	0.23439	H34	0.86361	0.23332	0.42318
H29	0.43228	0.96101	0.74531	H24	0.63554	0.76477	0.23427	H35	0.76671	0.63034	0.42311
H30	0.03896	0.47127	0.74526	H31	0.1971	0.90013	0.08966	H36	0.36959	0.1362	0.42298
H37	0.49143	0.50521	1.02153	H32	0.09997	0.29708	0.08966	H43	0.82487	0.17187	0.68869
H38	0.49435	-0.01429	1.01807	H33	0.70309	0.80294	0.08961	H44	0.82814	0.65301	0.68864
H39	1.01431	0.50865	1.01838	H40	0.15822	0.83888	0.35532	H45	0.34709	0.17522	0.68836
H46	0.50062	0.45916	0.99343	H41	0.16147	0.31956	0.35504	H52	0.83408	0.12584	0.66042
H47	0.54093	0.04095	0.98983	H42	0.68061	0.84171	0.35527	H53	0.87416	0.70825	0.66042
H48	0.95893	0.50002	0.99002	H49	0.16741	0.79282	0.32742	H54	0.29185	0.16602	0.66022
H55	0.45085	0.43909	0./1542	H50	0.20751	0.3748	0.32692	H61	0.78413	0.10577	0.38257
H56	0.56028	0.01215	0.70328	H51	0.62536	0.83251	0.32729	H62	0.89426	0.6/842	0.38256
H57	0.98793	0.54823	0.70319	H58	0.11755	0.77246	0.04949	H63	0.32154	0.21573	0.38217
H64	0.54249	0.49798	0./1189	H59	0.22753	0.34513	0.04885	H70	0.8/575	0.1647	0.37882
H65	0.50359	0.04432	0.69998	H60	0.65497	0.8825	0.04947	H71	0.83533	0./1111	0.3/881
H66	0.95564	0.45935	0.69988	H67	0.20918	0.83139	0.04574	H72	0.28882	0.1241	0.37874
H73	0.47815	0.30358	0.72944	H68	0.16862	0.37785	0.04545	H79	0.81172	-0.0296	0.39613

H74	0.69672	0.17565	0.73301	H69	0.6223	0.79087	0.04554	H80	1.02963	0.84135	0.39609
H75	0.82459	0.52151	0.73302	H76	0.14508	0.63705	0.06456	H81	0.15866	0.18827	0.39601
H82	0.5993	0.45119	0.75371	H77	0.36292	0.50801	0.06261	H88	0.93275	0.11806	0.42058
H83	0.54917	0.14946	0.75355	H78	0.49204	0.85498	0.06433	H89	0.88197	0.81472	0.42059
H84	0.85046	0.39994	0.75352	H85	0.26612	0.78475	0.08821	H90	0.18524	0.06721	0.42069
H91	0.38408	0.53929	0.87017	H86	0.21529	0.48142	0.08756	H97	0.7174	0.20598	0.53813
H92	0.45978	0.84318	0.87106	H87	0.51868	0.73392	0.08758	H98	0.79406	0.51146	0.53792
H93	0.15682	0.61658	0.87108	H94	0.05088	0.87296	0.20382	H99	0.48858	0.28248	0.53701
H100	0.50406	0.68771	0.88755	H95	0.12723	0.17807	0.20368	H106	0.83745	0.35439	0.55494
H101	0.31189	0.81584	0.89233	H96	0.82206	0.94914	0.20395	H107	0.64563	0.48307	0.55447
H102	0.18412	0.49601	0.89209	H103	0.17094	1.02134	0.22116	H108	0.5169	0.16243	0.55468
H109	0.58591	0.68557	0.80996	H104	-0.02114	0.14976	0.22131	H115	0.91917	0.35213	0.4767
H110	0.31307	0.89882	0.8127	H105	0.85043	0.8291	0.22117	H116	0.64788	0.5671	0.4766
H111	0.10109	0.41418	0.81276	H112	0.25275	1.01912	0.14338	H117	0.43288	0.08061	0.47692
H118	0.59785	0.64575	0.8915	H113	-0.0189	0.2338	0.1435	H124	0.93121	0.31238	0.55822
H119	0.35343	0.95137	0.89182	H114	0.76642	0.74729	0.14335	H125	0.68763	0.61884	0.55824
H120	0.04857	0.40203	0.89191	H121	0.26466	0.97925	0.22478	H126	0.38111	0.06871	0.55833
H127	0.58913	0.69231	0.95294	H122	0.02096	0.28557	0.22493	H133	0.92261	0.35902	0.61965
H128	0.30754	0.89649	0.95597	H123	0.71463	0.73536	0.22476	H134	0.64099	0.56356	0.61955
H129	0.10345	0.41102	0.95604	H130	0.25604	1.02584	0.28636	H135	0.43633	0.07735	0.61991
H136	0.3961	0.2895	0.73926	H131	-0.02564	0.23035	0.28648	H142	0.72964	-0.04379	0.40604
H137	0.71112	0.10797	0.74065	H132	0.76985	0.74399	0.28634	H143	1.04382	0.77346	0.40606
H138	0.89237	0.60353	0.74075	H139	0.06298	0.62284	0.07453	H144	0.22657	0.27034	0.40576
H145	0.39269	0.34318	0.7058	H140	0.37711	0.44012	0.07237	H151	0.72618	0.00985	0.37249
H146	0.65777	0.05101	0.70499	H141	0.55993	0.93707	0.0746	H152	0.99018	0.71637	0.37252
H147	0.94927	0.60702	0.70498	H148	0.05951	0.67641	0.04024	H153	0.28367	0.27379	0.37232
H154	0.38772	0.32397	0.84279	H149	0.32346	0.38301	0.03897	H160	0.72117	-0.00936	0.5095
H155	0.67623	0.06431	0.84257	H150	0.61698	0.94056	0.04038	H161	1.00938	0.73057	0.50953
H156	0.93603	0.6122	0.84259	H157	0.05458	0.65754	0.17748	H162	0.26944	0.27881	0.5093
H163	0.44778	0.70581	0.81068	H158	0.34274	0.39726	0.17593	H169	0.78126	0.3724	0.47761
H164	0.2934	0.74149	0.81267	H159	0.60297	0.94539	0.17763	H170	0.62767	0.4089	0.47696
H165	0.25831	0.5519	0.81113	H166	0.11471	1.03934	0.14339	H171	0.59111	0.21862	0.47692
H172	0.36877	0.60703	0.88673	H167	0.96082	1.07551	0.14356	H178	0.70218	0.27386	0.55462
H173	0.39169	0.7606	0.89022	H168	0.92465	0.88537	0.14335	H179	0.72619	0.42836	0.5542
H174	0.23941	0.631	0.89022	H175	0.03569	0.94084	0.22067	H180	0.57165	0.29768	0.55407
H181	0.5453	0.2832	0.76323	H176	0.05936	0.095	0.22061	H187	0.87868	-0.04984	0.43013
H182	0.71705	0.263	0.76665	H177	0.90515	0.96435	0.22082	H188	0.04986	-0.07144	0.4301
H183	0.73716	0.45485	0.76513	H184	0.21198	0.61682	0.09865	H189	0.07144	0.12131	0.43006
H190	0.60844	0.38427	0.67856	H185	0.38322	0.59524	0.09652	H196	0.94196	0.05126	0.34505
H191	0.61647	0.22521	0.67932	H186	0.40492	0.78802	0.09881	H197	0.94876	0.89072	0.34499
H192	0.77469	0.39152	0.67995	H193	0.27533	0.71787	0.0134	H198	0.10926	0.05803	0.345
C11	0.53213	-0.01409	0.87026	H194	0.28204	0.55743	0.01203	C223	-0.0493	-0.0069	0.48616
C12	1.01415	0.54631	0.87016	H195	0.4426	0.7248	0.01257	C224	1.0069	-0.04238	0.48614
C20	0.48257	1.01507	0.86876	C193	1.04688	1.00196	0.06592	C232	-0.04241	-0.04903	0.50345
C21	-0.01511	0.4675	0.86862	C194	-0.00183	1.04504	0.06604	C234	0.99336	0.04241	0.50349
C29	0.45015	-0.03674	0.82291	C202	1.0451	1.04677	0.04446	C242	1.01349	0.92349	0.43846
C30	1.03671	0.48689	0.82286	C204	0.00167	0.95501	0.04446	N17	-0.02554	-0.11588	0.38231
C38	0.51352	1.0082	0.95013	C212	-0.00437	0.07756	0.13017				
C39	-0.00822	0.50536	0.95026	N5	1.03514	1.10712	0.20028				

ND-COF-1 in eclipsed AA model (Space group <i>P</i> 1)											
	a	= 34.39	Å, b = 34	l.19 Å, c	= 10.89	Å, α = 90).33°, β =	89.02°,	$\gamma = 60.14$	l°	
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z
N1	0.65752	0.66105	0.05009	H100	0.21953	0.61947	0.37629	C61	0.26944	0.22564	0.70738
H2	0.66486	0.66059	-0.04364	H102	0.22613	0.61911	0.21118	C63	0.23505	0.21503	0.72666
C2	0.9094	0.55369	0.17845	H104	0.18753	0.60379	0.27885	C65	0.24492	0.17063	0.74573
C4	0.86688	0.57055	0.26177	C126	0.52769	0.50558	0.27615	C67	0.28933	0.13758	0.75959
C6	0.85955	0.52602	0.12587	H106	0.52862	0.48644	0.35901	H55	0.20053	0.24049	0.71262
C8	0.90454	0.52301	0.0854	H108	0.52251	0.48941	0.19424	H57	0.21892	0.16171	0.74029
H4	0.9152	0.58013	0.13757	H110	0.56052	0.50413	0.26496	C69	0.48038	0.94471	0.68966
H6	0.9077	0.53057	-0.01164	C128	0.24532	0.37485	0.28407	C71	0.43685	0.97713	0.72298
C10	0.86002	0.52981	0.26504	C130	0.21758	0.42019	0.22987	C73	0.40186	0.96748	0.72046
H8	0.82834	0.53628	0.31175	C132	0.17065	0.43367	0.19685	C75	0.40931	0.92539	0.67889
H10	0.88753	0.49963	0.30822	C134	0.15216	0.40349	0.22742	C77	0.45427	0.89066	0.65553
C12	0.82715	0.60442	0.18414	C136	0.18475	0.35485	0.24558	C79	0.48937	0.90091	0.66225
H12	0.83022	0.63267	0.14425	C138	0.2332	0.33973	0.25808	H59	0.50607	0.95384	0.67664
C14	0.82234	0.57403	0.09004	02	0.17172	0.32755	0.25202	H61	0.52315	0.87615	0.63433
H14	0.8224	0.58375	-0.00652	04	0.27842	0.36594	0.34373	C81	0.36954	0.91999	0.6508
H16	0.8693	0.58472	0.35092	06	0.14752	0.46926	0.14481	H63	0.34901	0.92595	0.73584
H18	0.85484	0.49818	0.09075	C140	0.10758	0.41911	0.24036	H65	0.34865	0.94484	0.58126
C16	0.78068	0.61752	0.23036	H112	0.09602	0.39636	0.2715	H67	0.37929	0.88601	0.61392
C18	0.74498	0.6599	0.26289	C142	0.26581	0.29738	0.22905	C83	0.35374	0.19694	0.67312
C20	0.70297	0.67333	0.21109	H114	0.30037	0.28909	0.23857	H69	0.38582	0.16441	0.67124
C22	0.69856	0.64701	0.1158	C144	0.23478	0.44694	0.20018	H71	0.34839	0.21072	0.57915
C24	0.73643	0.60584	0.07947	H116	0.21505	0.47638	0.14466	H73	0.35787	0.21951	0.73812
C26	0.77617	0.59042	0.14236	N3	0.07514	0.46566	0.21935	C85	0.36758	0.51462	0.73712
H20	0.67474	0.70521	0.24097	H118	0.07289	0.4834	0.3002	C87	0.40275	0.51798	0.8176
H22	0.7356	0.58756	-0.00091	N5	0.28031	0.43475	0.22647	C89	0.3452	0.58828	0.82234
C28	0.99272	0.50789	0.24614	H120	0.29847	0.42117	0.14434	C91	0.32782	0.56281	0.74254
C30	0.95115	0.51275	0.21939	N7	0.25646	0.2686	0.15348	H75	0.37944	0.49964	0.64393
C32	0.94705	0.48465	0.13373	H122	0.27285	0.2637	0.06838	H//	0.31403	0.5779	0.6524
C34	0.98454	0.45173	0.0685	C146	0.54847	0.76371	0.15751	C93	0.3/3//	0.55292	0.91472
C36	0.02/13	0.44408	0.10196	C148	0.50312	0.7756	0.20556	H/9	0.39269	0.56337	0.97484
C38	0.0317	0.47119	0.19335	C150	0.49801	0.73884	0.26069	H81	0.35451	0.54223	0.97428
HZ4	0.99458	0.5333	0.30126	C152	0.52617	0.6922	0.21059	(95	0.42049	0.54381	0.73937
H26	0.0567	0.41829	0.05376	C154	0.57021	0.68021	0.15132	H83	0.43468	0.52913	0.64712
U20	0.97922	0.42598	-0.03525	C150	0.58239	0.7159	0.12751	097	0.38064	0.592	0.74044
П20 Ц20	0.90201	0.40750	0 10675	010	0.59052	0.04091	0.12250	П0Э Ц07	0.30923	0.00752	0.04911
по 1100	1 01212	0.44934	0.10073	010	0.33669	0.79294	0.14900	П07	0.4292	0.46339	0.85305
пэ <u>г</u> С42	0 75175	0.40141	0.35058	C158	0.47009	0.7471	0.34233	C00	0.31839	0.02009	0.80279
H3/	0.75175	0.0050	0.33030	H124	0.51114	0.0024	0.20717	C101	0.44002	0.50247	0.00472
H36	0 77722	0.69751	0 31207	C160	0.62278	0 7063/	0.0791/	C103	0 49768	0 59009	0 78631
H38	0 72012	0 72202	0 36828	H126	0.62959	0 73353	0.0594	C105	0 46125	0.63503	0 77396
C44	0 40881	0.02285	0 16874	C162	0 46639	0.8169	0 19301	C107	0 41699	0.64236	0 77798
C46	0 39105	0.06474	0 25476	H128	0 43507	0.82331	0 23657	C109	0 41014	0.60633	0.8029
C48	0.33533	0.04941	0.25983	N9	0.4674	0.67362	0.25547	H91	0.53194	0.58314	0.78641
C50	0.37014	0.01295	0.1695	H130	0.44495	0.69359	0.18845	H93	0.38874	0.67502	0.75752

Table S2. Fractional atomic coordinates for the unit cell of ND-COF-1.

H40	0.42112	0.02625	0.07678	N11	0.46316	0.84855	0.10099	C111	0.33054	0.46462	0.76747
H42	0.35728	0.01143	0.07795	H132	0.49052	0.83571	0.03955	C113	0.33762	0.50008	0.79905
C52	0.36467	0.05535	0.3516	C28	-0.00728	0.50789	0.24614	C115	0.30186	0.54408	0.80729
H44	0.34563	0.08369	0.41722	C34	-0.01546	0.45173	0.0685	C117	0.25782	0.55383	0.79302
H46	0.38557	0.02459	0.40449	C36	1.02713	0.44408	0.10196	C119	0.24987	0.51742	0.78032
C54	0.35375	0.10395	0.18131	C38	1.0317	0.47119	0.19335	C121	0.28622	0.47249	0.761
H48	0.36369	0.10857	0.08739	C44	0.40881	1.02285	0.16874	H95	0.35874	0.43215	0.74105
C56	0.31518	0.09407	0.18827	C50	0.37014	1.01295	0.1695	H97	0.21545	0.52498	0.77813
H50	0.3003	0.09397	0.09854	C72	0.43685	-0.02287	0.22298	C123	0.22051	0.60179	0.78957
H52	0.41722	0.07146	0.29047	C74	0.40186	-0.03252	0.22046	H99	0.21953	0.61947	0.87629
H54	0.31031	0.04139	0.3001	H1	0.66486	0.66059	0.45636	H101	0.22613	0.61911	0.71118
C58	0.324	0.14761	0.24876	C1	0.9094	0.55369	0.67845	H103	0.18753	0.60379	0.77885
C60	0.31519	0.19073	0.21443	C3	0.86688	0.57055	0.76177	C125	0.52769	0.50558	0.77615
C62	0.26944	0.22564	0.20738	C5	0.85955	0.52602	0.62587	H105	0.52862	0.48644	0.85901
C64	0.23505	0.21503	0.22666	C7	0.90454	0.52301	0.5854	H107	0.52251	0.48941	0.69424
C66	0.24492	0.17063	0.24573	H3	0.9152	0.58013	0.63757	H109	0.56052	0.50413	0.76496
C68	0.28933	0.13758	0.25959	H5	0.9077	0.53057	0.48836	C127	0.24532	0.37485	0.78407
H56	0.20053	0.24049	0.21262	С9	0.86002	0.52981	0.76504	C129	0.21758	0.42019	0.72987
H58	0.21892	0.16171	0.24029	H7	0.82834	0.53628	0.81175	C131	0.17065	0.43367	0.69685
C70	0.48038	0.94471	0.18966	Н9	0.88753	0.49963	0.80822	C133	0.15216	0.40349	0.72742
C72	0.43685	0.97713	0.22298	C11	0.82715	0.60442	0.68414	C135	0.18475	0.35485	0.74558
C74	0.40186	0.96748	0.22046	H11	0.83022	0.63267	0.64425	C137	0.2332	0.33973	0.75808
C76	0.40931	0.92539	0.17889	C13	0.82234	0.57403	0.59004	01	0.17172	0.32755	0.75202
C78	0.45427	0.89066	0.15553	H13	0.8224	0.58375	0.49348	03	0.27842	0.36594	0.84373
C80	0.48937	0.90091	0.16225	H15	0.8693	0.58472	0.85092	05	0.14752	0.46926	0.64481
H60	0.50607	0.95384	0.17664	H17	0.85484	0.49818	0.59075	C139	0.10758	0.41911	0.74036
H62	0.52315	0.87615	0.13433	C15	0.78068	0.61752	0.73036	H111	0.09602	0.39636	0.7715
C82	0.36954	0.91999	0.1508	C17	0.74498	0.6599	0.76289	C141	0.26581	0.29738	0.72905
H64	0.34901	0.92595	0.23584	C19	0.70297	0.67333	0.71109	H113	0.30037	0.28909	0.73857
H66	0.34865	0.94484	0.08126	C21	0.69856	0.64701	0.6158	C143	0.23478	0.44694	0.70018
H68	0.37929	0.88601	0.11392	C23	0.73643	0.60584	0.57947	H115	0.21505	0.47638	0.64466
C84	0.35374	0.19694	0.17312	C25	0.77617	0.59042	0.64236	N2	0.07514	0.46566	0.71935
H70	0.38582	0.16441	0.17124	H19	0.67474	0.70521	0.74097	H117	0.07289	0.4834	0.8002
H72	0.34839	0.21072	0.07915	H21	0.7356	0.58756	0.49909	N4	0.28031	0.43475	0.72647
H74	0.35787	0.21951	0.23812	C27	0.99272	0.50789	0.74614	H119	0.29847	0.42117	0.64434
C86	0.36758	0.51462	0.23712	C29	0.95115	0.51275	0.71939	N6	0.25646	0.2686	0.65348
C88	0.40275	0.51798	0.3176	C31	0.94705	0.48465	0.63373	H121	0.27285	0.2637	0.56838
C90	0.3452	0.58828	0.32234	C33	0.98454	0.45173	0.5685	C145	0.54847	0.76371	0.65751
C92	0.32782	0.56281	0.24254	C35	0.02713	0.44408	0.60196	C147	0.50312	0.7756	0.70556
H76	0.37944	0.49964	0.14393	C37	0.0317	0.47119	0.69335	C149	0.49801	0.73884	0.76069
H78	0.31403	0.5779	0.1524	H23	0.99458	0.5333	0.80126	C151	0.52617	0.6922	0.71059
C94	0.37377	0.55292	0.41472	H25	0.0567	0.41829	0.55376	C153	0.57021	0.68021	0.65132
H80	0.39269	0.56337	0.47484	C39	0.97922	0.42598	0.46475	C155	0.58239	0.7159	0.62751
H82	0.35451	0.54223	0.47428	H27	0.96261	0.40736	0.49934	07	0.59632	0.64091	0.62256
C96	0.42049	0.54381	0.23937	H29	0.95831	0.44954	0.39325	09	0.55889	0.79294	0.64968
H84	0.43468	0.52913	0.14712	H31	1.01212	0.40141	0.42219	011	0.47009	0.7471	0.84253
C98	0.38064	0.592	0.24044	C41	0.75175	0.6898	0.85058	C157	0.51114	0.6624	0.70717
H86	0.36925	0.60732	0.14911	H33	0.7636	0.67241	0.93927	H123	0.53025	0.63177	0.65238
H88	0.4292	0.48539	0.35363	H35	0.77722	0.69751	0.81207	C159	0.62278	0.70634	0.57914
H90	0.31859	0.62069	0.36279	H37	0.72012	0.72203	0.86828	H125	0.62959	0.73353	0.5594

C100	0.44602	0.56247	0.30472	C43	0.40881	0.02285	0.66874	C161	0.46639	0.8169	0.69301
C102	0.49006	0.55324	0.28953	C45	0.39105	0.06474	0.75476	H127	0.43507	0.82331	0.73657
C104	0.49768	0.59009	0.28631	C47	0.33533	0.04941	0.75983	N8	0.4674	0.67362	0.75547
C106	0.46125	0.63503	0.27396	C49	0.37014	0.01295	0.6695	H129	0.44495	0.69359	0.68845
C108	0.41699	0.64236	0.27798	H39	0.42112	0.02625	0.57678	N10	0.46316	0.84855	0.60099
C110	0.41014	0.60633	0.3029	H41	0.35728	0.01143	0.57795	H131	0.49052	0.83571	0.53955
H92	0.53194	0.58314	0.28641	C51	0.36467	0.05535	0.8516	N12	0.65752	0.66105	0.55009
H94	0.38874	0.67502	0.25752	H43	0.34563	0.08369	0.91722	C27	-0.00728	0.50789	0.74614
C112	0.33054	0.46462	0.26747	H45	0.38557	0.02459	0.90449	C33	-0.01546	0.45173	0.5685
C114	0.33762	0.50008	0.29905	C53	0.35375	0.10395	0.68131	C35	1.02713	0.44408	0.60196
C116	0.30186	0.54408	0.30729	H47	0.36369	0.10857	0.58739	C37	1.0317	0.47119	0.69335
C118	0.25782	0.55383	0.29302	C55	0.31518	0.09407	0.68827	C43	0.40881	1.02285	0.66874
C120	0.24987	0.51742	0.28032	H49	0.3003	0.09397	0.59854	C49	0.37014	1.01295	0.6695
C122	0.28622	0.47249	0.261	H51	0.41722	0.07146	0.79047	C71	0.43685	-0.02287	0.72298
H96	0.35874	0.43215	0.24105	H53	0.31031	0.04139	0.8001	C73	0.40186	-0.03252	0.72046
H98	0.21545	0.52498	0.27813	C57	0.324	0.14761	0.74876				
C124	0.22051	0.60179	0.28957	C59	0.31519	0.19073	0.71443				

Table S3. Fractional atomic coordinates for the unit cell of ND-COF-1.

ND-COF-1 in staggered AB model (Space group <i>P</i> 1)														
	a = 34.12 Å, b = 33.64 Å, c = 9.16 Å, α = 91.11°, β = 89°, γ = 60.98°													
Atoms	x	У	z	Atoms	х	У	z	Atoms	х	У	z			
N1	0.0066	0.98948	-0.00466	H98	0.56323	0.86778	0.24922	C61	0.29703	0.2225	0.74616			
H2	0.01392	0.98647	-0.11701	C124	0.57355	0.94141	0.30944	C63	0.26442	0.2102	0.78796			
C2	0.25744	0.88638	0.18631	H100	0.57716	0.95508	0.41657	C65	0.27615	0.16486	0.81138			
C4	0.21323	0.89774	0.27061	H102	0.57753	0.96151	0.22152	C67	0.32125	0.1325	0.80857			
C6	0.21072	0.86017	0.07149	H104	0.53937	0.94527	0.30566	H55	0.22922	0.23516	0.78581			
C8	0.25568	0.86087	0.04911	C126	0.88347	0.83317	0.29041	H57	0.2506	0.15471	0.81978			
H4	0.26327	0.91558	0.16516	H106	0.88185	0.81043	0.37362	C69	0.51022	0.94238	0.64984			
H6	0.25992	0.87496	-0.05522	H108	0.87846	0.82193	0.18088	C71	0.46809	0.97387	0.70584			
C10	0.20778	0.85628	0.23619	H110	0.91727	0.83033	0.29099	C73	0.43374	0.96277	0.72047			
H8	0.17537	0.85963	0.2767	C128	0.59618	0.71473	0.23234	C75	0.43999	0.92035	0.67143			
H10	0.23484	0.82409	0.27863	C130	0.56374	0.76206	0.19357	C77	0.48402	0.88644	0.62684			
C12	0.17548	0.93556	0.18252	C132	0.51507	0.77605	0.19625	C79	0.51879	0.89798	0.61769			
H12	0.17927	0.9659	0.15979	C134	0.49949	0.74271	0.23267	H59	0.53503	0.95262	0.62487			
C14	0.17348	0.90969	0.04619	C136	0.53366	0.69364	0.23653	H61	0.55161	0.87359	0.57386			
H14	0.17576	0.92447	-0.05915	C138	0.58239	0.6792	0.22397	C81	0.39962	0.91368	0.65751			
H16	0.21266	0.9062	0.38866	02	0.52164	0.66515	0.25313	H63	0.38428	0.91623	0.76753			
H18	0.20798	0.83371	0.00522	04	0.6348	0.70434	0.26029	H65	0.37448	0.94031	0.58875			
C16	0.12824	0.94617	0.21869	O 6	0.48787	0.81516	0.16803	H67	0.40793	0.88038	0.60587			
C18	0.09116	0.98673	0.26728	C140	0.45565	0.75587	0.26121	C83	0.37934	0.19698	0.67284			
C20	0.04986	0.99957	0.20087	H112	0.44594	0.7309	0.29425	H69	0.41174	0.16492	0.66011			
C22	0.04781	0.97623	0.07171	C142	0.61364	0.63591	0.18872	H71	0.37022	0.21175	0.56339			
C24	0.08763	0.93861	0.01525	H114	0.64858	0.62747	0.18403	H73	0.38514	0.21989	0.74685			
C26	0.12647	0.9225	0.09509	C144	0.5775	0.7911	0.14486	C85	0.40086	0.50949	0.7804			
H20	0.02019	1.02909	0.24508	H116	0.55327	0.82272	0.09764	C87	0.43376	0.51195	0.89132			
H22	0.0885	0.92293	-0.08989	N3	0.42147	0.80267	0.25376	C89	0.37855	0.58355	0.88852			
C28	0.33905	0.83889	0.27497	H118	0.4169	0.81677	0.35963	C91	0.36293	0.55864	0.77995			
C30	0.29886	0.84366	0.22425	N5	0.62397	0.77975	0.141	H75	0.41541	0.49432	0.67043			

C32	0.29771	0.82037	0.09804	H120	0.63404	0.77667	0.03095	H77	0.35403	0.57312	0.66954
C34	0.33701	0.7923	0.01679	N7	0.60131	0.60594	0.1141	C93	0.40232	0.54801	1.00287
C36	0.3783	0.78406	0.07437	H122	0.61492	0.59998	0.00769	H79	0.41972	0.55805	1.08523
C38	0.37972	0.80667	0.20513	C146	0.90046	0.09692	0.11946	H81	0.38006	0.53825	1.06433
H24	0.33858	0.86183	0.36035	C148	0.85823	0.10892	0.2036	C95	0.45598	0.53656	0.81112
H26	0.4092	0.76203	0.01392	C150	0.8567	0.07172	0.28343	H83	0.47259	0.52148	0.70319
C40	0.3347	0.77302	-0.1297	C152	0.87973	0.02504	0.2149	C97	0.41772	0.58553	0.80662
H28	0.31838	0.75161	-0.11719	C154	0.91717	0.01427	0.10695	H85	0.41071	0.60007	0.69592
H30	0.31478	0.80101	-0.20394	C156	0.93221	0.04843	0.07945	H87	0.45774	0.47889	0.93729
H32	0.36863	0.75175	-0.18035	08	0.93526	-0.02238	0.04012	H89	0.35151	0.61686	0.93195
C42	0.09584	1.01596	0.38369	010	0.91039	0.12633	0.09145	C99	0.48047	0.55459	0.90254
H34	0.10773	0.99655	0.48499	012	0.83613	0.07975	0.40048	C101	0.52516	0.54467	0.89651
H36	0.12055	1.02641	0.3465	C158	0.86657	0.9936	0.24023	C103	0.53398	0.58145	0.9021
H38	0.06341	1.04711	0.40889	H124	0.88366	0.96153	0.17818	C105	0.49892	0.6269	0.8883
C44	0.75527	0.3592	0.13147	C160	0.97356	0.03636	0.0229	C107	0.45438	0.63508	0.87777
C46	0.73935	0.4028	0.22824	H126	0.983	0.06229	0.00103	C109	0.44575	0.59914	0.89604
C48	0.68451	0.38587	0.26221	C162	0.82072	0.15009	0.20044	H91	0.56835	0.57438	0.90556
C50	0.7171	0.34819	0.15059	H128	0.79223	0.15619	0.27077	H93	0.42726	0.66825	0.85279
H40	0.76451	0.3613	0.01583	N9	0.83349	0.99963	0.35197	C111	0.359	0.46194	0.79159
H42	0.70227	0.34523	0.04638	H130	0.80433	1.02999	0.33203	C113	0.36692	0.49698	0.83818
C52	0.71604	0.39424	0.35736	N11	0.81177	0.18143	0.08424	C115	0.33267	0.54194	0.84049
H44	0.69875	0.42385	0.43515	H132	0.83619	0.1693	0.00011	C117	0.28919	0.55329	0.80358
H46	0.73853	0.3645	0.4221	N1	1.0066	-0.01052	-0.00466	C119	0.27945	0.51764	0.77842
C54	0.69975	0.44045	0.1452	C152	0.87973	1.02504	0.2149	C121	0.31461	0.47146	0.76653
H48	0.70643	0.44346	0.02765	C158	0.86657	-0.0064	0.24023	H95	0.38695	0.4284	0.76733
C56	0.66173	0.42979	0.17362	C160	-0.02644	1.03636	0.0229	H97	0.24505	0.52682	0.75849
H50	0.64445	0.42795	0.07383	H1	0.69323	0.644	0.44179	C123	0.25474	0.60204	0.78554
H52	0.76618	0.41097	0.2569	C1	0.93496	0.55018	0.72286	H99	0.25061	0.62171	0.88875
H54	0.66091	0.37765	0.32209	С3	0.89236	0.56135	0.81763	H101	0.26583	0.61662	0.69657
C58	0.67194	0.48519	0.22535	C5	0.8875	0.52185	0.62778	H103	0.22174	0.60545	0.75753
C60	0.66205	0.52841	0.17871	C7	0.93122	0.52349	0.59213	C125	0.56222	0.49644	0.88247
C62	0.61619	0.56326	0.18384	H3	0.93955	0.57964	0.69377	H105	0.56015	0.47709	0.97628
C64	0.58257	0.55234	0.2259	H5	0.93331	0.53691	0.48384	H107	0.55904	0.48044	0.7795
C66	0.59305	0.5075	0.25276	С9	0.88747	0.51914	0.79366	H109	0.59564	0.49457	0.88101
C68	0.63785	0.47465	0.25647	H7	0.85606	0.52211	0.84258	C127	0.27178	0.37594	0.80987
H56	0.54762	0.5777	0.21993	H9	0.91574	0.48761	0.83515	C129	0.24422	0.42045	0.7409
H58	0.56692	0.49813	0.25989	C11	0.8524	0.59799	0.73303	C131	0.19654	0.43415	0.7114
C70	0.82837	0.28202	0.15507	H11	0.85478	0.6287	0.70381	C133	0.17782	0.40386	0.75321
C72	0.78511	0.31445	0.19833	C13	0.84949	0.57072	0.60239	C135	0.2101	0.3551	0.77652
C74	0.75065	0.30345	0.21055	H13	0.84991	0.58492	0.49398	C137	0.25873	0.34015	0.78946
C76	0.75815	0.25986	0.17066	H15	0.89364	0.57077	0.93359	01	0.19661	0.32759	0.78771
C78	0.80302	0.22528	0.13975	H17	0.88425	0.49464	0.5679	03	0.30558	0.36807	0.87545
C80	0.83779	0.23687	0.13463	C15	0.80586	0.60759	0.77798	05	0.1729	0.47015	0.65303
H60	0.85345	0.29189	0.12922	C17	0.76854	0.64845	0.8239	C139	0.13321	0.41957	0.77224
H62	0.87141	0.21177	0.10019	C19	0.72729	0.66066	0.75788	H111	0.12136	0.39674	0.81082
C82	0.71852	0.25237	0.15037	C21	0.72536	0.63583	0.63259	C141	0.29083	0.29669	0.76227
H64	10 60012	0 261/6	0 25262	C23	0 7648	0.59718	0.58095	H113	0.32558	0.28825	0.77251
	0.09813	0.20140	0.23302	625	0.7010	0.007.20					
H66	0.69813	0.20140	0.23302	C25	0.8037	0.58242	0.65877	C143	0.26214	0.44603	0.69252
H66 H68	0.69813 0.69742 0.72852	0.27418 0.21663	0.25302 0.06274 0.11951	C25 H19	0.8037	0.58242	0.65877 0.79878	C143 H115	0.26214 0.2424	0.44603 0.47436	0.69252 0.62328

H70	0.73102	0.50205	0.10152	C27	0.01892	0.50401	0.79247	H117	0.09846	0.48417	0.84914
H72	0.69062	0.54868	0.00147	C29	0.97774	0.50804	0.75613	N4	0.30814	0.43402	0.71574
H74	0.70596	0.5576	0.18366	C31	0.97422	0.48374	0.63647	H119	0.32501	0.42266	0.61435
C86	0.71891	0.85159	0.21498	C33	0.01163	0.45509	0.54871	N6	0.28077	0.26601	0.68087
C88	0.75586	0.84965	0.31689	C35	0.05397	0.44746	0.59295	H121	0.29441	0.26158	0.57494
C90	0.70093	0.92108	0.34826	C37	0.05805	0.4713	0.716	C145	0.57716	0.75882	0.63938
C92	0.68088	0.90026	0.24047	H23	0.02022	0.52751	0.87207	C147	0.53207	0.77263	0.70517
H76	0.72915	0.84135	0.0983	H25	0.08364	0.42481	0.528	C149	0.52713	0.73787	0.78863
H78	0.667	0.91916	0.13901	C39	0.00613	0.43444	0.40942	C151	0.55347	0.68917	0.73849
C94	0.72881	0.88129	0.44495	H27	-0.01024	0.41364	0.43386	C153	0.5931	0.6765	0.63885
H80	0.7492	0.88825	0.52425	H29	-0.01514	0.46169	0.33473	C155	0.60953	0.7097	0.61457
H82	0.70895	0.86913	0.50899	H31	0.03899	0.41224	0.3532	07	0.61198	0.63907	0.57684
C96	0.77535	0.87715	0.23966	C41	0.77287	0.67862	0.93766	09	0.58847	0.78739	0.61383
H84	0.78846	0.8661	0.12553	H33	0.78505	0.65983	1.03995	011	0.5008	0.74963	0.8931
C98	0.73706	0.92625	0.25699	H35	0.79717	0.68935	0.8984	C157	0.5421	0.65703	0.77418
H86	0.72607	0.94462	0.15311	H37	0.7402	0.70956	0.96215	H123	0.56212	0.62317	0.72522
H88	0.78129	0.81491	0.34684	C43	0.43696	0.02027	0.65131	C159	0.65247	0.69616	0.5731
H90	0.67576	0.95259	0.40725	C45	0.42277	0.0618	0.75706	H125	0.66316	0.72122	0.55223
C100	0.8026	0.89196	0.33013	C47	0.36879	0.04381	0.79435	C161	0.49538	0.81343	0.68513
C102	0.84751	0.88102	0.32349	C49	0.39919	0.00882	0.67288	H127	0.46443	0.82095	0.74343
C104	0.85735	0.91673	0.3476	H39	0.44389	0.02504	0.53563	N8	0.50818	0.66455	0.88444
C106	0.8228	0.96292	0.34536	H41	0.38236	0.00827	0.57044	H129	0.47868	0.69337	0.85616
C108	0.77769	0.97254	0.33422	C51	0.40207	0.05025	0.88661	N10	0.49175	0.84317	0.5686
C110	0.76839	0.93666	0.34154	H43	0.38618	0.07815	0.97099	H131	0.51893	0.82887	0.49403
H92	0.89197	0.90895	0.3551	H45	0.42595	0.01912	0.94303	N12	0.68479	0.6488	0.5535
H94	0.75081	1.00669	0.31851	C53	0.3814	0.10127	0.68607	C27	1.01892	0.50401	0.79247
C112	0.67794	0.80328	0.21872	H47	0.38587	0.107	0.56908	C29	-0.02226	0.50804	0.75613
C114	0.68788	0.83584	0.27647	C55	0.34422	0.08952	0.71608	C31	-0.02578	0.48374	0.63647
C116	0.65388	0.8802	0.30528	H49	0.32532	0.08959	0.61814	C33	1.01163	0.45509	0.54871
C118	0.60894	0.89262	0.29027	H51	0.45007	0.06946	0.78367	C43	0.43696	1.02027	0.65131
C120	0.59827	0.85825	0.25363	H53	0.34645	0.03414	0.85528	C49	0.39919	1.00882	0.67288
C122	0.63272	0.81363	0.21006	C57	0.35451	0.14423	0.77659	C71	0.46809	-0.02613	0.70584
H96	0.70458	0.77162	0.17234	C59	0.34322	0.18849	0.73685	C73	0.43374	-0.03723	0.72047

Figure S12. Pawley refinement for ND-COF-2. Pawley refinement suggests that the simulated (blue) and experimental (red) PXRD patterns are in good agreement. The black line denotes the refinement difference, and green lines denote observed reflections.

ND-COF-2 in ABC stacking model (Space group = <i>P</i> 1)												
	á	a = 30.53	Å, b = 32	2.44 Å, c	= 12.74 Å	λ, α = 90.	59°, β = 9) 1.95° <i>,</i> γ	= 117.74	0		
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	X	Y	Z	
C1	0.45156	0.50706	0.8302	C47	0.56235	1.02661	0.79039	C7	0.78474	0.17388	0.49793	
C2	0.49387	0.94326	0.81505	C48	-0.02717	0.53548	0.7857	C8	0.8279	0.61065	0.49137	
C3	0.0551	0.54855	0.81475	C4	0.1179	0.84052	0.16407	С9	0.38708	0.21458	0.48989	
C10	0.44884	0.46306	0.88062	C5	0.16118	0.2771	0.1583	C16	0.78206	0.12987	0.54815	
C11	0.53903	0.98454	0.87181	C6	0.7207	0.88147	0.15694	C17	0.87146	0.65145	0.5442	
C12	0.01372	0.55275	0.86963	C13	0.11505	0.79652	0.2148	C18	0.34623	0.21774	0.5409	
C19	0.52411	0.51221	0.87879	C14	0.20481	0.31778	0.21126	C25	0.85732	0.17906	0.5463	
C20	0.48775	0.01125	0.87251	C15	0.67982	0.88463	0.20781	C26	0.82187	0.67701	0.54452	
C21	0.98557	0.47448	0.86734	C22	0.19032	0.84573	0.21405	C27	0.31928	0.14232	0.5384	
C28	0.50535	0.54246	0.83063	C23	0.15524	0.34336	0.21264	C34	0.83851	0.2093	0.49826	
C29	0.45801	0.96152	0.81762	C24	0.65292	0.80921	0.20552	C35	0.79213	0.62855	0.49376	
C30	0.03589	0.49424	0.81478	C31	0.17168	0.87594	0.16514	C36	0.36825	0.16072	0.48987	
C37	0.48788	0.48335	0.96125	C32	0.12543	0.29501	0.16148	C43	0.82111	0.15015	0.62875	
C38	0.51742	0.00264	0.95392	C33	0.7019	0.82761	0.15708	C44	0.85059	0.66898	0.62616	
C39	0.99401	0.51221	0.94997	C40	0.15382	0.81683	0.29603	C45	0.32714	0.17855	0.62118	
C46	0.46526	0.4392	0.80135	C41	0.18404	0.33515	0.29377	C52	0.79849	0.10608	0.46872	
C47	0.56235	0.02661	0.79039	C42	0.66073	0.84548	0.28819	C53	0.89536	0.69267	0.46724	
C48	0.97283	0.53548	0.7857	C49	0.13176	0.77272	0.136	C54	0.30608	0.20179	0.46168	

Table	S4 .	Fractional	atomic	coordinates	for	the i	unit	cell	of NI).(COF	-2.
Lable	D ••	1 I uctionui	acomic	cool annaces	101	UIIC (um	con	01 1 11		_	_

	0 5 1 0 1 0	0 4754	0 7002	050	0 22064	0 25014	0 1 2 4 6 2	C C1	0 05 24	0 1 4 2 2 0	0 46574
C55	0.51918	0.4754	0.7983	C50	0.22864	0.35914	0.13463	61	0.8524	0.14229	0.46574
C50	0.52504	0.04409	0.78801	C51	0.03909	0.80803	0.12852	62	0.85878	0.70984	0.40532
C57	0.95388	0.48097	0.78259	C58	0.18567	0.80896	0.13385	C63	0.28752	0.14773	0.45826
C64	0.47822	0.40235	0.83355	<u> </u>	0.19208	0.37632	0.13347	C70	0.81141	0.06919	0.50074
665	0.59907	0.07621	0.83129	00	0.02117	0.81457	0.12525	C71	0.93103	0.74233	0.5017
C66	0.92336	0.52385	0.8241	667	0.14462	0.73585	0.16864	C72	0.25668	0.18983	0.49385
C73	0.45991	0.35396	0.80275	668	0.26498	0.40873	0.1693	C/9	0.79313	0.02084	0.46955
C74	0.64748	0.10723	0.80252	C69	0.59027	0.85665	0.16056	080	0.97987	0.77274	0.47028
C75	0.89404	0.54303	0.79454	C/6	0.12655	0.68/5/	0.13/12	C81	0.22792	0.20945	0.4622
682	0.4939	0.33825	0.78639	C//	0.31314	0.43916	0.13/32	C88	0.82/13	0.0052	0.45273
C83	0.66251	0.15678	0.78695	C78	0.56147	0.8762	0.12869	C89	0.99487	0.82203	0.45108
C84	0.84434	0.50996	0.77671	C85	0.16067	0.67203	0.12084	C90	0.1/841	0.17659	0.44162
C91	0.54438	0.3/2/4	0.78138	C86	0.32808	0.48845	0.11818	C97	0.87761	0.039/1	0.44778
C92	0.62775	0.1/239	0.78117	<u>C87</u>	0.51196	0.84329	0.10827	<u>C98</u>	0.95996	0.83742	0.44497
C93	0.82692	0.45924	0.77059	C94	0.21115	0.70661	0.11689	C99	0.1612	0.12594	0.43504
C100	0.5604	0.42295	0.79273	C95	0.29315	0.50383	0.11275	C106	0.89363	0.08989	0.4599
C101	0.57757	0.13813	0.79279	C96	0.4948	0.79263	0.10193	C107	0.91	0.80314	0.45985
C102	0.85965	0.4413	0.78367	C103	0.22705	0.75674	0.12946	C108	0.19405	0.10829	0.45019
C109	0.52655	0.43519	0.82911	C104	0.24325	0.46956	0.1284	C115	0.85974	0.10205	0.49641
C110	0.56516	0.09184	0.8277	C105	0.5277	0.77505	0.11708	C116	0.89839	0.75743	0.49775
C111	0.90619	0.47403	0.8197	C112	0.19296	0.76876	0.16518	C117	0.24013	0.14127	0.48873
C118	0.41323	0.55893	0.87455	C113	0.23173	0.42384	0.16605	C124	0.74637	0.22567	0.54263
C119	0.44296	0.85264	0.86116	C114	0.57377	0.80809	0.15558	C125	0.77598	0.51988	0.52893
C120	0.14486	0.58683	0.86715	C121	0.07944	0.89238	0.20737	C126	0.47723	0.25278	0.53324
C127	0.44663	0.54336	0.89316	C122	0.10927	0.18626	0.19487	C133	0.77982	0.21015	0.56107
C128	0.45869	0.90141	0.88187	C123	0.81084	0.91972	0.2003	C134	0.7913	0.56849	0.55155
C129	0.09573	0.5538	0.88391	C130	0.11282	0.87685	0.22662	C135	0.4283	0.21942	0.55242
C136	0.49571	0.57529	0.89553	C131	0.12463	0.23481	0.2182	C142	0.8289	0.24211	0.56327
C137	0.4258	0.91873	0.88641	C132	0.76192	0.88636	0.21957	C143	0.75914	0.58535	0.55646
C138	0.07782	0.50345	0.88529	C139	0.16188	0.9088	0.22945	C144	0.41092	0.17026	0.55416
C145	0.51479	0.62522	0.88107	C140	0.09249	0.25168	0.22386	C151	0.84792	0.29202	0.54866
C146	0.37597	0.88743	0.87331	C141	0.74456	0.83721	0.22146	C152	0.70937	0.55462	0.53985
C147	0.10894	0.48472	0.87179	C148	0.18098	0.95871	0.21463	C153	0.44166	0.15118	0.5379
C154	0.48203	0.6425	0.87007	C149	0.04269	0.221	0.20737	C160	0.81513	0.30925	0.5374
C155	0.35925	0.83771	0.85884	C150	0.77532	0.81813	0.20537	C161	0.69242	0.505	0.52315
C156	0.15887	0.51755	0.85971	C157	0.14823	0.97597	0.20296	C162	0.49152	0.18382	0.5239
C163	0.43129	0.60959	0.86391	C158	0.02571	0.1714	0.19016	C169	0.76438	0.27631	0.5315
C164	0.39228	0.82011	0.85078	C159	0.82517	0.85078	0.1913	C170	0.72543	0.48733	0.51629
C165	0.17709	0.56841	0.85534	C166	0.09749	0.94304	0.19647	C171	0.50964	0.23466	0.51992
C172	0.5686	0.6591	0.87102	C167	0.0587	0.15374	0.18249	C178	0.90173	0.32598	0.53883
C173	0.34128	0.90652	0.86915	C168	0.84326	0.90161	0.18701	C179	0.67511	0.57424	0.53512
C174	0.08954	0.43094	0.86501	C175	0.2348	0.99256	0.20463	C180	0.42193	0.09733	0.53102
C181	0.40648	0.32093	0.78446	C176	0.00846	0.24066	0.20315	C187	0.7397	-0.01219	0.45126
C182	0.68139	0.08784	0.78486	C177	0.7556	0.76428	0.19855	C188	1.01357	0.75297	0.45413
C183	0.91537	0.59676	0.77928	C184	0.0732	0.65451	0.11783	C189	0.24958	0.26329	0.44818
C190	0.37854	0.66351	0.69228	C185	0.34681	0.4194	0.1204	C196	0.71182	0.33023	0.35978
C191	0.33463	0.71057	0.68612	C186	0.5831	0.93001	0.1142	C197	0.66816	0.37752	0.35174
C192	0.28726	0.61945	0.69354	C193	0.04493	0.9969	0.02441	C198	0.62051	0.28633	0.3592
C199	0.37956	0.70891	0.66367	C194	0.00124	0.04418	0.01711	C205	0.71309	0.37566	0.33037
C200	0.28839	0.66545	0.66658	C195	0.95363	0.95302	0.02483	C206	0.62186	0.33244	0.33215

C201	0.33212	0.61794	0.67302	C202	0.04614	1.04233	-0.00476	C207	0.66542	0.28471	0.34006
01	0.41808	0.74625	0.64561	C203	-0.04509	-0.0009	-0.00217	07	0.75174	0.41293	0.3127
02	0.25072	0.66629	0.65059	C204	0.99847	0.95139	0.00498	08	0.58428	0.33342	0.3159
03	0.33117	0.57918	0.66093	04	0.08476	1.0796	-0.02259	09	0.66443	0.24589	0.32856
C208	0.41142	0.66552	0.7623	05	-0.08271	0.00007	-0.01793	C214	0.74449	0.33217	0.43
C209	0.33471	0.74326	0.75354	06	0.99744	0.91256	-0.0068	C215	0.66824	0.41051	0.41819
C210	0.2549	0.58754	0.76253	C211	0.07767	0.99883	0.09443	C216	0.5876	0.25416	0.42695
N1	0.39865	0.6267	0.83669	C212	0.00143	0.07713	0.08388	N7	0.7317	0.29336	0.50407
N2	0.37525	0.77043	0.82294	C213	0.92096	0.92097	0.09315	N8	0.7087	0.43781	0.48769
N3	0.22707	0.60107	0.82937	N4	0.06486	0.9601	0.16874	N9	0.55943	0.26755	0.493
C217	0.6183	0.32633	0.86943	N5	0.04194	0.10428	0.15332	C223	0.9518	-0.00738	0.53142
C218	0.67676	0.29426	0.8604	N6	0.893	0.93446	0.15966	C224	0.00954	-0.04023	0.51921
C219	0.70871	0.38519	0.86203	C220	0.2855	0.65938	0.19989	C225	0.04235	0.05086	0.52234
C226	0.62761	0.28595	0.88547	C221	0.34301	0.62629	0.18629	C232	0.96069	-0.0481	0.5458
C227	0.71789	0.34402	0.8736	C222	0.37605	0.71742	0.18994	C233	0.05103	0.00931	0.53215
C228	0.65963	0.3758	0.88775	C229	0.29427	0.61855	0.21355	C234	-0.00647	0.04189	0.54929
010	0.59577	0.24675	0.9196	C230	0.38462	0.67578	0.19903	016	0.92894	-0.08705	0.58113
011	0.75838	0.35108	0.89659	C231	0.32736	0.70857	0.21772	017	0.09124	0.01583	0.55587
012	0.65312	0.40795	0.9234	013	0.26257	0.57966	0.24925	018	-0.01241	0.07418	0.58634
C235	0.57836	0.31866	0.81682	014	0.42483	0.68217	0.22223	C241	0.9116	-0.01458	0.48077
C236	0.68311	0.26113	0.80784	015	0.32163	0.74088	0.25539	C242	0.01535	-0.07367	0.46664
C237	0.73955	0.42595	0.81004	C238	0.24524	0.65236	0.14978	C243	0.07363	0.09199	0.47212
N10	0.5785	0.35719	0.75767	C239	0.34862	0.59276	0.13358	N16	0.91172	0.02427	0.42303
N11	0.64301	0.22174	0.75449	C240	0.4073	0.75858	0.13977	N17	0.97475	0.8864	0.41589
N12	0.77701	0.42724	0.74497	N13	0.24542	0.69134	0.09246	N18	0.11154	0.09377	0.40785
H1	0.43267	0.4993	0.75456	N14	0.30783	0.55276	0.08348	H7	0.7658	0.16616	0.42236
H2	0.5002	0.93286	0.73471	N15	0.44511	0.76039	0.0751	H8	0.83613	0.6007	0.41482
H3	0.06686	0.5662	0.73551	H4	0.09921	0.83277	0.08819	H9	0.39819	0.23347	0.41423
H10	0.41295	0.43827	0.91177	H5	0.16934	0.26733	0.08147	H16	0.74618	0.10504	0.57927
H11	0.56454	0.9733	0.9038	H6	0.73182	0.90032	0.08124	H17	0.89636	0.64027	0.57424
H12	0.0252	0.58932	0.90304	H13	0.07907	0.7717	0.24543	H18	0.35769	0.25365	0.57246
H19	0.56103	0.5339	0.90803	H14	0.22971	0.30651	0.24085	H25	0.89425	0.20075	0.57549
H20	0.46537	0.0262	0.90511	H15	0.69125	0.92055	0.23927	H26	0.79987	0.69167	0.57496
H21	0.9697	0.4368	0.89847	H22	0.22714	0.86744	0.24382	H27	0.30374	0.10533	0.56735
H28	0.52272	0.55883	0.75559	H23	0.1333	0.35798	0.2436	H34	0.85584	0.22568	0.4232
H29	0.4418	0.96167	0.73932	H24	0.63737	0.77224	0.23456	H35	0.77596	0.6303	0.41903
H30	0.03623	0.47858	0.7359	H31	0.18925	0.89227	0.09025	H36	0.36696	0.14334	0.41466
H37	0.48361	0.50336	1.02633	H32	0.10918	0.29693	0.087	H43	0.81686	0.17012	0.69391
H38	0.49714	-0.02263	1.0172	H33	0.70064	0.8102	0.08193	H44	0.83045	0.64385	0.6899
H39	1.01838	0.51609	1.01438	H40	0.14933	0.83681	0.36084	H45	0.35138	0.18243	0.68602
H46	0.49402	0.45758	1.00566	H41	0.16396	0.3099	0.35737	H52	0.82728	0.12436	0.67304
H47	0.54303	0.03419	0.99935	H42	0.68496	0.8494	0.35308	H53	0.87602	0.70049	0.67215
H48	0.96219	0.5065	0.99395	H49	0.15985	0.79106	0.34078	H54	0.29536	0.17269	0.66577
H55	0.44503	0.43011	0.72735	H50	0.20953	0.36658	0.33991	H61	0.77827	0.09706	0.39471
H56	0.57119	0.01758	0.71108	H51	0.62893	0.83962	0.33269	H62	0.905	0.68254	0.39261
H57	0.98317	0.5539	0.70704	H58	0.11182	0.76371	0.06164	H63	0.31747	0.22206	0.38775
H64	0.53541	0.49112	0.72203	H59	0.23817	0.34913	0.05971	H70	0.86864	0.15803	0.3895
H65	0.51149	0.04522	0.70839	H60	0.6511	0.88886	0.05455	H71	0.84322	0.71074	0.38909
H66	0.95312	0.46612	0.70211	H67	0.20218	0.82469	0.0578	H72	0.28686	0.13155	0.38188
LI72	0.48131	0.3004	0.76832	H68	0.17643	0.37735	0.05745	H79	0.81455	-0.03262	0.43418

LI7/	0 70032	0 18226	0 7604	LIEO	0.62054	0 70836	0 04803		1 02252	0 8/1722	0 12111
H75	0.70032	0.18250	0.7094	H76	0.02034	0.79630	0.04695	H81	0.15/11	0.84733	0.43144
C244	0.610/1	0.32334	0.75055	H77	0.14022	0.03420	0.10192	C250	0.13411	0.13023	0.42243
C244 C245	0.01041	0.40233	0.760011	LI72	0.30300	0.51575	0.09805	C250	0.94373	0.1294	0.42824
C245	0.33804	0.1407	0.75962	C247	0.40702	0.05005	0.00000	C251	0.8055	0.01233	0.42604
C253	0.36105	0.50555	0.75502	C248	0.27755	0.75055	0.000021	C259	0.10204	0.03713	0.52005
C254	0.30103	0.32130	0.83/5/	C240	0.20303	0.47341	0.00010	C260	0.03413	0.10020	0.52005
C254	0.48012	0.63755	0.83434	C249	0.01000	0.72393	0.09290	C260	0.01343	0.3034	0.50557
L235	0.10039	0.03934	0.8479	C250	0.02751	0.833	0.16925	L00	0.49247	0.30330	0.51505
	0.49032	0.00117	0.00014	C257	0.1407	0.17107	0.10055		0.62941	0.34769	0.52712
1104	0.32007	0.81339	0.8481		0.82005	0.97228	0.1805	100	0.05395	0.481	0.51007
П84 U01	0.18291	0.50304	0.84801		0.10254	1.01403	0.19277	H90	0.51530	0.16919	0.51057
H91	0.57701	0.07682	0.79184	H80	-0.01278	0.14742	0.17727	H97	0.91019	0.34369	0.45963
H92	0.32311	0.89838	0.79048	H87	0.84904	0.83617	0.17806	H98	0.65794	0.56727	0.45546
H93	0.09833	0.42166	0.7862	H94	0.24326	1.01011	0.12527	H99	0.42981	0.08785	0.4515
H100	0.58898	0.63924	0.88022	H95	-0.008/3	0.23384	0.12354	H106	0.92216	0.30618	0.54824
H101	0.36056	0.94653	0.88216	H96	0.76349	0.75479	0.11903	H107	0.69454	0.61409	0.55049
H102	0.04942	0.41031	0.8762	H103	0.25516	0.9727	0.21429	H108	0.38192	0.07687	0.54417
H109	0.5811	0.68755	0.93341	H104	0.02792	0.28048	0.21886	H115	0.91411	0.35444	0.60119
H110	0.31319	0.88878	0.93189	H105	0.71559	0.74381	0.21169	H116	0.64623	0.55594	0.59604
H111	0.10655	0.41977	0.92785	H112	0.24729	1.02113	0.26672	H117	0.43946	0.08612	0.59255
H118	0.39829	0.28366	0.7625	H113	-0.0204	0.22227	0.26407	H124	0.73153	-0.04945	0.42919
H119	0.71864	0.11758	0.76487	H114	0.77314	0.75309	0.26009	H125	1.05069	0.78233	0.43206
H120	0.88675	0.60587	0.75929	H121	0.06517	0.61734	0.09541	H126	0.22128	0.27262	0.4266
H127	0.39408	0.33552	0.71887	H122	0.38386	0.44876	0.09785	H133	0.72728	0.00242	0.38577
H128	0.66781	0.06136	0.71823	H123	0.5548	0.93927	0.09195	H134	0.9995	0.72549	0.38949
H129	0.94235	0.60944	0.71366	H130	0.06098	0.66927	0.05225	H135	0.27732	0.27632	0.38409
H136	0.38602	0.31871	0.85771	H131	0.33254	0.3919	0.05581	H142	0.71924	-0.01446	0.52455
H137	0.68336	0.06926	0.8578	H132	0.61096	0.94298	0.05037	H143	1.01604	0.73552	0.52842
H138	0.93391	0.61624	0.85325	H139	0.05245	0.65199	0.1908	H144	0.26726	0.28229	0.52316
H145	0.44464	0.6999	0.77575	H140	0.34951	0.40198	0.19451	H151	0.77764	0.36643	0.44356
H146	0.30088	0.74261	0.77	H141	0.60062	0.94913	0.18919	H152	0.63446	0.41008	0.43386
H147	0.25612	0.5549	0.78185	H148	0.11088	1.03306	0.10776	H153	0.58856	0.22138	0.4461
H154	0.36236	0.60645	0.86079	H149	-0.03232	0.0767	0.09991	H160	0.6954	0.27308	0.52813
H155	0.39595	0.7547	0.84577	H150	0.92199	0.88823	0.11226	H161	0.72932	0.42209	0.5112
H156	0.24265	0.63766	0.85088	H157	0.02856	0.93987	0.19286	H162	0.57486	0.3041	0.51471
H163	0.54856	0.28187	0.80469	H158	0.06258	0.08851	0.17638	H169	0.88144	-0.05122	0.46908
H164	0.7195	0.26784	0.79125	H159	0.90847	0.97104	0.1811	H170	0.05158	-0.06721	0.44903
H165	0.73189	0.45554	0.80302	H166	0.21498	0.61578	0.13811	H171	0.06646	0.12196	0.467
H172	0.61081	0.38142	0.71885	H167	0.38477	0.59914	0.1155	H178	0.9439	0.04859	0.38393
H173	0.61833	0.22949	0.71673	H168	0.40022	0.78863	0.13524	H179	0.9495	0.89362	0.37908
H174	0.76737	0.39818	0.69305	H175	0.27764	0.71576	0.05361	H180	0.10245	0.06485	0.35587
H181	0.35325	0.52326	0.76603	H176	0.28248	0.55993	0.04706	H190	0.20876	0.05826	0.36564
H182	0.33589	0.52794	0.90048	H177	0.43598	0.73145	0.02318	H191	0.14588	0.03317	0.39468
H183	0.35374	0.48417	0.86878	H184	0.20546	0.51018	0.14413	H192	0.18718	0.04023	0.49929
H196	0.63885	0.46049	0.80696	H185	0.16654	0.44738	0.11335	H193	0.52236	0.32931	0.56817
H197	0.61521	0.49919	0.77193	H186	0.20579	0.48796	0.01247	H194	0.46181	0.31223	0.52744
H198	0.6158	0.45803	0.67492	H187	0.18425	0.20234	0.18305	H195	0.50481	0.31513	0.43033
H208	0.51777	0.86847	0.84774	H188	0.14363	0.16162	0.08339	H199	0.8722	0.8438	0.47435
H209	0.47653	0.82704	0.74993	H189	0.14145	0.14081	0.21798	H200	0.83335	0.78098	0.44364
H210	0.47511	0.80722	0.88515	H202	0.54256	0.72507	0.03273	H201	0.87287	0.8215	0.34296

H211	0.53971	0.17863	0.80895	H203	0.47965	0.69996	0.06136	H214	0.85096	0.53591	0.51839
H212	0.50125	0.11646	0.77209	H204	0.52082	0.707	0.16628	H215	0.81056	0.49493	0.41879
H213	0.54234	0.15891	0.67601	H205	0.85602	0.99629	0.23477	H216	0.80806	0.47446	0.55383
H217	0.87326	0.39076	0.69818	H206	0.7954	0.97916	0.1945	H220	0.68603	0.18975	0.43505
H218	0.81059	0.36608	0.72983	H207	0.83825	0.98196	0.09708	H221	0.66913	0.19474	0.56971
H219	0.8527	0.37319	0.83253	H226	0.01962	0.85668	0.09843	H222	0.68688	0.1509	0.53797
H223	0.19023	0.6632	0.90326	H227	0.00206	0.86132	0.2327	H229	0.97197	0.12742	0.47568
H224	0.13002	0.64665	0.86074	H228	0.02001	0.8176	0.20134	H230	0.94847	0.16619	0.44032
H225	0.17345	0.64949	0.76495	H232	0.30525	0.7944	0.14776	H231	0.94952	0.12535	0.34313
C11	0.53903	-0.01546	0.87181	H233	0.28188	0.83312	0.11106	C223	-0.0482	-0.00738	0.53142
C12	1.01372	0.55275	0.86963	H234	0.28371	0.79253	0.01437	C224	1.00954	-0.04023	0.51921
C20	0.48775	1.01125	0.87251	C193	1.04493	0.9969	0.02441	C232	-0.03931	-0.0481	0.5458
C21	-0.01443	0.47448	0.86734	C194	0.00124	1.04418	0.01711	C234	0.99353	0.04189	0.54929
C29	0.45801	-0.03848	0.81762	C195	-0.04637	-0.04698	0.02483	C242	1.01535	0.92633	0.46664
C30	1.03589	0.49424	0.81478	C202	0.04614	0.04233	-0.00476	N17	-0.02525	-0.1136	0.41589
C38	0.51742	1.00264	0.95392	C203	0.95491	0.9991	-0.00217				
C39	-0.00599	0.51221	0.94997	C204	-0.00153	0.95139	0.00498				

Table S5. Fractional atomic coordinates for the unit cell of ND-COF-2.

ND-COF-2 in eclipsed AA model (Space group P1)												
		a = 34.48	3 Å, b = 3	3.14 Å, c	= 10.89	Å, α = 89	.83°, β =	88.81° <i>,</i> γ	= 60.25°			
Atoms	x	У	Z	Atoms	x	У	z	Atoms	x	У	z	
N1	0.6572	0.6642	0.04811	C137	0.18545	0.35457	0.24198	C69	0.47959	0.94455	0.69261	
H2	0.66411	0.66657	-0.04474	C139	0.2336	0.34019	0.25562	C71	0.43601	0.97705	0.72474	
C2	0.90906	0.55397	0.1728	02	0.1731	0.32666	0.24694	C73	0.40102	0.96747	0.72196	
C4	0.86682	0.57052	0.25616	04	0.27855	0.36703	0.33877	C75	0.40835	0.92542	0.68082	
C6	0.85967	0.52568	0.12187	06	0.14552	0.47125	0.15167	C77	0.45314	0.89066	0.65779	
C8	0.90444	0.52307	0.08063	C141	0.10788	0.4177	0.23625	C79	0.48823	0.90079	0.66508	
H4	0.91476	0.58054	0.131	H111	0.09689	0.39398	0.26337	H60	0.52183	0.87581	0.63787	
H6	0.90753	0.53071	-0.01668	C143	0.26653	0.29781	0.22906	C82	0.36864	0.92007	0.65305	
C10	0.8603	0.52948	0.2609	H113	0.30084	0.28972	0.24101	H62	0.34772	0.9268	0.73769	
H8	0.82893	0.53561	0.30806	C145	0.23299	0.44891	0.19754	H64	0.3483	0.94448	0.58154	
H10	0.88789	0.4994	0.30456	H115	0.21243	0.47872	0.1436	H66	0.37831	0.88582	0.61892	
C12	0.8273	0.60411	0.17771	N3	0.07506	0.46461	0.22201	C84	0.3547	0.1968	0.67511	
H12	0.83033	0.6323	0.13604	H117	0.0741	0.47991	0.30569	H68	0.38667	0.16429	0.6764	
C14	0.82211	0.57361	0.08563	N5	0.2789	0.43647	0.21631	H70	0.35026	0.21	0.5802	
H14	0.82188	0.58329	-0.01153	H119	0.29451	0.42618	0.12977	H72	0.35814	0.21986	0.73947	
H16	0.86906	0.58485	0.34497	N7	0.2581	0.26876	0.15239	C86	0.36767	0.51478	0.74021	
H18	0.85521	0.49761	0.08776	H121	0.27533	0.26381	0.06861	C88	0.40256	0.51786	0.82179	
C16	0.78129	0.61725	0.22539	C147	0.54799	0.76446	0.16204	C90	0.3454	0.58823	0.8258	
C18	0.74639	0.65966	0.25811	C149	0.50271	0.77529	0.2075	C92	0.32825	0.56301	0.74477	
C20	0.70441	0.67403	0.20641	C151	0.49806	0.73775	0.2606	H74	0.37983	0.50007	0.64711	
C22	0.69868	0.64799	0.11331	C153	0.52772	0.69116	0.21266	H76	0.31492	0.57836	0.65429	
C24	0.73575	0.60532	0.0791	C155	0.57195	0.68025	0.15731	C94	0.37349	0.55259	0.91857	
C26	0.77601	0.59007	0.13998	C157	0.58275	0.71697	0.13276	H78	0.39225	0.56283	0.97951	
H20	0.67707	0.70643	0.23552	08	0.59931	0.64101	0.13234	H80	0.35396	0.54179	0.97714	
H22	0.75718	0.57152	-0.09587	010	0.55758	0.79436	0.15539	C96	0.4205	0.54387	0.74403	

C28	0.99191	0.50848	0.24599	012	0.46932	0.7453	0.3393	H82	0.43459	0.52952	0.65165
C30	0.95071	0.51322	0.2152	C159	0.51367	0.6606	0.20631	C98	0.38103	0.59208	0.74509
C32	0.94697	0.48506	0.12996	H123	0.53413	0.62991	0.15347	H84	0.36997	0.60757	0.65337
C34	0.98458	0.45212	0.06663	C161	0.6226	0.70871	0.08368	H86	0.42875	0.48514	0.8582
C36	0.02684	0.44428	0.10267	H125	0.62851	0.73665	0.06486	H88	0.31883	0.62059	0.86587
C38	0.0313	0.47104	0.1953	C163	0.46571	0.81641	0.19492	C100	0.44612	0.56218	0.80954
H24	1.01024	0.55933	0.27639	H127	0.43456	0.82204	0.23752	C102	0.48991	0.55282	0.79156
H26	0.05642	0.41843	0.05525	N9	0.46851	0.67234	0.24044	C104	0.49781	0.58944	0.78313
C40	0.97973	0.42631	-0.03727	H129	0.45027	0.68702	0.16138	C106	0.46171	0.63466	0.77141
H28	0.96274	0.40788	-0.00318	N11	0.46202	0.84861	0.10311	C108	0.41707	0.64265	0.78329
H30	0.95942	0.44981	-0.11003	H131	0.4892	0.83609	0.04128	C110	0.41052	0.60617	0.80854
H32	1.01273	0.40155	-0.07805	C164	0.37085	0.41883	0.24333	H90	0.53217	0.58183	0.77909
C42	0.75397	0.68851	0.34691	H132	0.3941	0.40948	0.32107	H92	0.38428	0.71608	0.77324
H34	0.76554	0.67039	0.43519	H133	0.36218	0.39179	0.23322	C112	0.33057	0.46437	0.76857
H36	0.77989	0.69576	0.30916	C166	0.37665	0.68826	0.26456	C114	0.33741	0.50008	0.80085
H38	0.72285	0.72098	0.36545	H136	0.36298	0.68946	0.1723	C116	0.302	0.54419	0.80786
C44	0.40816	0.02282	0.16944	H137	0.35058	0.69425	0.33539	C118	0.2582	0.5543	0.79107
C46	0.39076	0.06458	0.25498	H143	0.69985	0.58938	-0.05803	C120	0.24995	0.51823	0.77525
C48	0.3349	0.04959	0.26038	C169	0.20895	0.1589	0.24327	C122	0.28586	0.47304	0.75696
C50	0.36948	0.01307	0.17051	H145	0.17556	0.18923	0.23231	H94	0.38835	0.42014	0.658
H40	0.42047	0.02625	0.07721	H146	0.21515	0.13535	0.16562	H96	0.2155	0.52645	0.77004
H42	0.35657	0.01167	0.07908	C171	0.99299	0.54369	0.32621	C124	0.22143	0.60246	0.78763
C52	0.36426	0.05527	0.35211	H149	0.95872	0.57074	0.35231	H98	0.22033	0.61962	0.87517
H44	0.34543	0.08359	0.41747	H150	1.01061	0.52816	0.41243	H100	0.22767	0.62003	0.71033
H46	0.38495	0.02438	0.40533	H151	0.52902	0.95042	0.08409	H102	0.1884	0.60494	0.77515
C54	0.35381	0.10401	0.1811	C174	0.51593	0.95635	0.18029	C126	0.52704	0.50497	0.7788
H48	0.36381	0.10878	0.08707	H155	0.50343	0.99227	0.20486	H104	0.52784	0.48589	0.86233
C56	0.31519	0.09431	0.18799	H156	0.5435	0.93486	0.24253	H106	0.52145	0.48897	0.69756
H50	0.30046	0.09434	0.09804	C28	-0.00809	0.50848	0.24599	H108	0.55998	0.50311	0.76675
H52	0.41705	0.071	0.29055	C34	-0.01542	0.45212	0.06663	C128	0.24516	0.37579	0.78118
H54	0.30971	0.04181	0.30092	C36	1.02684	0.44428	0.10267	C130	0.21656	0.42149	0.72897
C58	0.32426	0.14756	0.24841	C38	1.0313	0.47104	0.1953	C132	0.1696	0.43471	0.69887
C60	0.31594	0.19068	0.21458	C44	0.40816	1.02282	0.16944	C134	0.15221	0.40318	0.72553
C62	0.27051	0.22582	0.207	C50	0.36948	1.01307	0.17051	C136	0.18545	0.35457	0.74198
C64	0.23586	0.2156	0.22626	C72	0.43601	-0.02295	0.22474	C138	0.2336	0.34019	0.75562
C66	0.24512	0.17111	0.24537	C74	0.40102	-0.03253	0.22196	01	0.1731	0.32666	0.74694
C68	0.28944	0.13779	0.25904	H1	0.66411	0.66657	0.45526	03	0.27855	0.36703	0.83877
H56	0.20165	0.241/1	0.212/1	C1	0.90906	0.55397	0.6728	05	0.14552	0.4/125	0.65167
H58	0.20867	0.14228	0.3308	C3	0.86682	0.57052	0.75616	C140	0.10788	0.41//	0.73625
C70	0.47959	0.94455	0.19261	C5	0.85967	0.52568	0.62187	H110	0.09689	0.39398	0.76337
C72	0.43601	0.97705	0.22474	<u> </u>	0.90444	0.52307	0.58063	C142	0.26653	0.29781	0.72906
C74	0.40102	0.96747	0.22196	H3	0.91476	0.58054	0.631	H112	0.30084	0.28972	0.74101
C70	0.40835	0.92542	0.16082	H5	0.90753	0.530/1	0.48332	U144	0.23299	0.44891	0.69754
C78	0.45314	0.89066	0.15779		0.8603	0.52948	0.7609	H114	0.21243	0.47872	0.6436
	0.40023	0.90079	0.1000		0.02093	0.0004	0.00000		0.07506	0.40401	0.72201
П Э Э С 0 1	0.74335	0.54207	0.01072	с11	0.00/09	0.4994	0.60430	N1 UTTO	0.0741	0.47991	0.00009
	0.73302	0.5/5/0	0.01973		0.02/3	0.00411	0.07771	IN4	0.2/89	0.43047	0.71031
C03 101	0.32103	0.07007	0.15/8/	C12	0.03033	0.0323	0.03004	NC 0110	0.29451	0.42018	0.029//
L03	0.30804	0.92007	0.12305	L13	0.02211	0.5/301	0.20003		0.2581	0.200/0	0.05239
103	0.54//2	0.9268	0.23769	412	0.02100	0.28329	U.4004/	П120	0.27533	U.20381	102001

H65	0.3483	0.94448	0.08154	H15	0.86906	0.58485	0.84497	C146	0.54799	0.76446	0.66204
H67	0.37831	0.88582	0.11892	H17	0.85521	0.49761	0.58776	C148	0.50271	0.77529	0.7075
C85	0.3547	0.1968	0.17511	C15	0.78129	0.61725	0.72539	C150	0.49806	0.73775	0.7606
H69	0.38667	0.16429	0.1764	C17	0.74639	0.65966	0.75811	C152	0.52772	0.69116	0.71266
H71	0.35026	0.21	0.0802	C19	0.70441	0.67403	0.70641	C154	0.57195	0.68025	0.65731
H73	0.35814	0.21986	0.23947	C21	0.69868	0.64799	0.61331	C156	0.58275	0.71697	0.63276
C87	0.36767	0.51478	0.24021	C23	0.73575	0.60532	0.5791	07	0.59931	0.64101	0.63234
C89	0.40256	0.51786	0.32179	C25	0.77601	0.59007	0.63998	09	0.55758	0.79436	0.65539
C91	0.3454	0.58823	0.3258	H19	0.67707	0.70643	0.73552	011	0.46932	0.7453	0.8393
C93	0.32825	0.56301	0.24477	H21	0.75718	0.57152	0.40413	C158	0.51367	0.6606	0.70631
H75	0.37983	0.50007	0.14711	C27	0.99191	0.50848	0.74599	H122	0.53413	0.62991	0.65347
H77	0.31492	0.57836	0.15429	C29	0.95071	0.51322	0.7152	C160	0.6226	0.70871	0.58368
C95	0.37349	0.55259	0.41857	C31	0.94697	0.48506	0.62996	H124	0.62851	0.73665	0.56486
H79	0.39225	0.56283	0.47951	C33	0.98458	0.45212	0.56663	C162	0.46571	0.81641	0.69492
H81	0.35396	0.54179	0.47714	C35	0.02684	0.44428	0.60267	H126	0.43456	0.82204	0.73752
C97	0.4205	0.54387	0.24403	C37	0.0313	0.47104	0.6953	N8	0.46851	0.67234	0.74044
H83	0.43459	0.52952	0.15165	H23	1.01024	0.55933	0.77639	H128	0.45027	0.68702	0.66138
C99	0.38103	0.59208	0.24509	H25	0.05642	0.41843	0.55525	N10	0.46202	0.84861	0.60311
H85	0.36997	0.60757	0.15337	C39	0.97973	0.42631	0.46273	H130	0.4892	0.83609	0.54128
H87	0.42875	0.48514	0.3582	H27	0.96274	0.40788	0.49682	N12	0.6572	0.6642	0.54811
H89	0.31883	0.62059	0.36587	H29	0.95942	0.44981	0.38997	C165	0.37085	0.41883	0.74333
C101	0.44612	0.56218	0.30954	H31	1.01273	0.40155	0.42195	H134	0.3941	0.40948	0.82107
C103	0.48991	0.55282	0.29156	C41	0.75397	0.68851	0.84691	H135	0.36218	0.39179	0.73322
C105	0.49781	0.58944	0.28313	H33	0.76554	0.67039	0.93519	C167	0.37665	0.68826	0.76456
C107	0.46171	0.63466	0.27141	H35	0.77989	0.69576	0.80916	H138	0.36298	0.68946	0.6723
C109	0.41707	0.64265	0.28329	H37	0.72285	0.72098	0.86545	H139	0.35058	0.69425	0.83539
C111	0.41052	0.60617	0.30854	C43	0.40816	0.02282	0.66944	H140	0.69985	0.58938	0.44197
H91	0.53217	0.58183	0.27909	C45	0.39076	0.06458	0.75498	C168	0.73362	0.57576	0.48027
H93	0.38428	0.71608	0.27324	C47	0.3349	0.04959	0.76038	H141	1.01061	0.52816	0.91243
C113	0.33057	0.46437	0.26857	C49	0.36948	0.01307	0.67051	H142	0.74335	0.54207	0.51896
C115	0.33741	0.50008	0.30085	H39	0.42047	0.02625	0.57721	H144	0.95872	0.57074	0.85231
C117	0.302	0.54419	0.30786	H41	0.35657	0.01167	0.57908	C170	0.20895	0.1589	0.74327
C119	0.2582	0.5543	0.29107	C51	0.36426	0.05527	0.85211	H147	0.17556	0.18923	0.73231
C121	0.24995	0.51823	0.27525	H43	0.34543	0.08359	0.91747	H148	0.21515	0.13535	0.66562
C123	0.28586	0.47304	0.25696	H45	0.38495	0.02438	0.90533	C172	0.99299	0.54369	0.82621
H95	0.38835	0.42014	0.158	C53	0.35381	0.10401	0.6811	H152	0.52902	0.95042	0.58409
H97	0.2155	0.52645	0.27004	H47	0.36381	0.10878	0.58707	C173	0.51593	0.95635	0.68029
C125	0.22143	0.60246	0.28/63	C55	0.31519	0.09431	0.68799	H153	0.50343	0.99227	0.70486
H99	0.22033	0.61962	0.37517	H49	0.30046	0.09434	0.59804	H154	0.5435	0.93486	0.74253
H101	0.22767	0.62003	0.21033	H51	0.41705	0.071	0.79055	(27	-0.00809	0.50848	0.74599
H103	0.1884	0.60494	0.27515	H53	0.309/1	0.04181	0.80092	C33	-0.01542	0.45212	0.56663
	0.52704	0.50497	0.2/88	C57	0.32426	0.14/56	0.74841	C35	1.02684	0.44428	0.60267
H107	0.52784	0.48589	0.30233	C59	0.31594	0.13008	0.71458	(37	1.0313	1 02202	0.6953
H100	0.52145	0.4889/	0.19/50	C61	0.27051	0.22582	0.707	C43	0.40816	1.02282	0.00944
C130	0.55998	0.50311	0.200/5	C65	0.23586	0.2150	0.72020	C49	0.30948	1.01307	0.0/051
C129	0.24516	0.3/5/9	0.20110	605	0.24512	0.12770	0.74537	C71	0.43601	-0.02295	0.72474
C131	0.21050	0.42149	0.22897		0.28944	0.13/79	0.75904	C/3	0.40102	-0.03253	0.72196
C133	0.1030	0.434/1	0.13991		0.20105	0.241/1	0.71271				
C132	0.12221	0.40318	0.22553	пэ/	0.2086/	0.14228	0.8308				

ND-COF-2 in staggered AB model (Space group P1)											
		a = 34.2	7 Å, b = 3	32.91 Å, d	: = 9.70 Å	, α = 88.	54° <i>,</i> β = 8	84.80°, γ	= 61.95°		
Atoms	x	У	Z	Atoms	х	У	Z	Atoms	x	У	z
N1	0.33907	0.32784	0.07643	C135	0.82071	0.05916	0.26946	H57	0.20196	0.14744	0.85642
H2	0.34853	0.33528	-0.02261	C137	0.85295	0.00977	0.28575	C69	0.47473	0.95038	0.65594
C2	0.58195	0.20606	0.24758	C139	-0.10047	0.99667	0.31199	C71	0.43118	0.983	0.69692
C4	0.53788	0.21646	0.33429	02	0.84094	-0.01971	0.28055	C73	0.39749	0.97041	0.72102
C6	0.53437	0.18277	0.14324	04	0.93954	0.02661	0.41997	C75	0.40587	0.92511	0.69658
C8	0.57958	0.18307	0.11652	06	0.81663	0.12979	0.19457	C77	0.4505	0.89086	0.66363
H4	0.58859	0.23586	0.229	C141	0.77666	0.07282	0.27773	C79	0.48458	0.90388	0.6471
H6	0.5845	0.19915	0.01867	H111	0.76487	0.0477	0.30118	H60	0.51817	0.87835	0.61424
C10	0.5309	0.1757	0.29864	C143	-0.06676	0.95377	0.28701	C82	0.36712	0.91543	0.69572
H8	0.49825	0.17901	0.34089	H113	-0.03363	0.94707	0.3063	H62	0.34764	0.92503	0.79827
H10	0.55694	0.14201	0.33243	C145	0.90208	0.10801	0.25301	H64	0.34535	0.9361	0.61515
C12	0.50157	0.25687	0.25913	H115	0.8843	0.1379	0.19043	H66	0.37748	0.87869	0.67411
H12	0.50677	0.28756	0.24015	N3	0.74494	0.12063	0.26762	C84	0.34079	0.20519	0.55249
C14	0.49912	0.23374	0.12844	H117	0.74283	0.13609	0.36247	H68	0.3732	0.17338	0.55033
H14	0.50262	0.25052	0.03034	N5	0.94732	0.09481	0.27619	H70	0.3345	0.2159	0.44393
H16	0.5375	0.22264	0.4465	H119	0.96545	0.08386	0.17961	H72	0.34426	0.23159	0.61103
H18	0.53063	0.15774	0.07827	N7	-0.07167	0.92166	0.20203	C86	0.34651	0.5271	0.70897
C16	0.45417	0.26822	0.29868	H121	-0.05198	0.91635	0.1087	C88	0.37029	0.53275	0.83061
C18	0.41925	0.31027	0.34687	C147	0.22766	0.41816	0.23595	C90	0.326	0.60516	0.77497
C20	0.38006	0.32888	0.27902	C149	0.18225	0.42301	0.26396	C92	0.31604	0.57679	0.67141
C22	0.37769	0.3081	0.15473	C151	0.17821	0.38073	0.29706	H74	0.36846	0.50491	0.6202
C24	0.41497	0.2669	0.10312	C153	0.2157	0.33504	0.25253	H76	0.31931	0.58457	0.55989
C26	0.45197	0.24689	0.17913	C155	0.2608	0.33072	0.22663	C94	0.33437	0.57627	0.90481
H20	0.35256	0.36073	0.32001	C157	0.26601	0.3726	0.19794	H78	0.34614	0.58883	0.98907
H22	0.44714	0.21229	-0.05284	08	0.29339	0.29279	0.22812	H80	0.30504	0.57299	0.95043
C28	0.66241	0.15673	0.31534	010	0.2338	0.45144	0.24943	C96	0.40351	0.54881	0.76297
C30	0.6223	0.16193	0.2747	012	0.14395	0.38354	0.3563	H82	0.42717	0.52679	0.67671
C32	0.62037	0.1409	0.15397	C159	0.20922	0.29944	0.21753	C98	0.373	0.5985	0.7236
C34	0.65871	0.11424	0.06828	H123	0.23768	0.26801	0.17664	H84	0.37798	0.60653	0.61329
C36	0.69981	0.10551	0.113	C161	0.30361	0.37036	0.13378	H86	0.38527	0.50209	0.8967
C38	0.70235	0.12607	0.23641	H125	0.30645	0.40168	0.11609	H88	0.30004	0.64161	0.78968
H24	0.67639	0.2083	0.39677	C163	0.14516	0.46313	0.24661	C100	0.42313	0.56834	0.85784
H26	0.73	0.08472	0.04806	H127	0.11319	0.46502	0.27926	C102	0.46663	0.55423	0.88699
C40	0.65554	0.09734	-0.07023	N9	0.16563	0.30558	0.20047	C104	0.47953	0.58868	0.90121
H28	0.63881	0.07549	-0.05605	H129	0.16474	0.30013	0.09531	C106	0.45224	0.63478	0.86164
H30	0.63596	0.12704	-0.13528	N11	0.14475	0.49757	0.15062	C108	0.41047	0.64636	0.81065
H32	0.68889	0.07659	-0.12542	H131	0.17437	0.48594	0.08669	C110	0.3957	0.61329	0.82147
C42	0.42438	0.33544	0.46482	C164	1.0374	0.07226	0.33368	H90	0.51196	0.57933	0.93456
H34	0.43158	0.31365	0.55798	H132	1.05617	0.06357	0.42695	H92	0.37071	0.72009	0.82312
H36	0.45216	0.34339	0.43703	H133	1.02637	0.04593	0.32168	C112	0.29652	0.4864	0.71101
H38	0.39372	0.36827	0.49024	C166	0.07372	0.33251	0.26325	C114	0.30537	0.52208	0.74558
C44	0.08295	0.67563	0.24164	H136	0.07884	0.33741	0.15066	C116	0.2776	0.56761	0.71224
C46	0.06179	0.71915	0.33648	H137	0.04008	0.33557	0.28505	C118	0.23968	0.57943	0.64433
C48	0.00884	0.69802	0.34414	H143	0.41396	0.2688	-0.11852	C120	0.22784	0.54476	0.62116
C50	0.04643	0.66169	0.24374	C169	-0.1177	0.80294	0.31054	C122	0.25572	0.49822	0.65501

Table S6. Fractional atomic coordinates for the unit cell of ND-COF-2.

H40	0.09626	0.6797	0.13609	H145	-0.15064	0.83191	0.29166	H94	0.3629	0.43135	0.66893
H42	0.03697	0.65872	0.13912	H146	-0.10751	0.77679	0.22625	H96	0.19843	0.55326	0.56876
C52	0 03424	0 7079	0 44758	C171	0 66144	0 18604	0 43352	C124	0 21317	0 62759	0 59568
H44	0.01293	0.73718	0.52013	H149	0.62691	0.20868	0.47779	H98	0.20291	0.65217	0.68446
H46	0.05419	0.67776	0.51097	H150	0.68	0.16375	0.51755	H100	0.23363	0.63582	0.516
C54	0.02615	0 75655	0.2507	H151	0 20219	0.61301	0 13536	H102	0 18278	0.63202	0 55067
H48	0.03777	0 761	0 14316	C174	0 18961	0.61589	0 24612	C126	0 49829	0 50415	0 9009
C56	-0.01063	0.7428	0 25964	H155	0 17563	0.65232	0.28137	H104	0.48503	0.48946	0.98547
H50	-0.01003	0.7420	0.25504	H156	0.17505	0.05232	0.20137	H106	0.40000	0.40540	0.90947
HE2	0.02102	0.74013	0.13777	(02	1 00747	0.33410	0.3070	L100	0.50255	0.40945	0.00247
	0.00378	0.72095	0.3732	C112	0.00071	0.21039	0.3000	C120	0.3314	0.49094	0.52475
1134 CE9	0.01333	0.00709	0.38385	C115	1 00020	0.12034	0.33039	C120	0.23073	0.38430	0.00402
C50	0.00028	0.00002	0.32370	C115	0.02406	0.13369	0.30333	C130	0.1952	0.43302	0.70273
C60	-0.01490	0.04515	0.26254	C117	-0.02400	1 02412	0.36203	C132	0.14676	0.44177	0.74075
C62	-0.05995	0.07025	0.20752	C129	-0.09045	1.05415	0.34740	C134	0.13094	0.4057	0.75065
004	-0.09361	0.86493	0.28827	C137	-0.14705	1.00977	0.28575	C130	0.1/109	0.35805	0.67271
C00	-0.08348	0.81899	0.31480	C139	0.89955	-0.00333	0.31199	01	0.21939	0.34722	0.05390
008	-0.03979	0.78767	0.33597	HI	0.00152	0.64/12	0.43191	01	0.1607	0.32944	0.64065
H56	-0.12/22	0.8895	0.26882	C1	0.90013	0.55478	0.7134	03	0.26936	0.37486	0.69559
H58	-0.12094	0.7873	0.41082	<u>C3</u>	0.85435	0.56742	0.79359	05	0.12046	0.48037	0.77959
C70	0.15526	0.59972	0.26365	C5	0.85532	0.5264	0.61302	C140	0.09595	0.40914	0.77346
C72	0.11105	0.63005	0.30467	C7	0.90037	0.52715	0.58842	H110	0.0899	0.3795	0.77376
C74	0.0779	0.61656	0.30258	H3	0.90718	0.58394	0.68718	C142	0.25225	0.30561	0.60654
C76	0.08793	0.57273	0.25346	H5	0.90745	0.53955	0.48614	H112	0.2861	0.3002	0.59547
C78	0.13324	0.54041	0.21972	C9	0.84887	0.52486	0.77029	C144	0.20381	0.46895	0.68007
C80	0.16628	0.5545	0.2263	H7	0.81589	0.52858	0.81032	H114	0.17641	0.50373	0.69277
H59	0.38761	0.23761	-0.03045	H9	0.87423	0.49303	0.81569	N2	0.05963	0.45284	0.82098
C81	0.416	0.24516	-0.03257	C11	0.81911	0.60416	0.70467	H116	0.05279	0.44843	0.92593
H61	0.20023	0.53176	0.18853	H11	0.82358	0.6348	0.67657	N4	0.24586	0.46244	0.61467
C83	0.05021	0.56358	0.22508	C13	0.81979	0.5758	0.58095	H118	0.24346	0.46445	0.50784
H63	0.03077	0.56467	0.32417	H13	0.82449	0.58929	0.47786	N6	0.24323	0.27204	0.54448
H65	0.02796	0.59025	0.15621	H15	0.85136	0.57777	0.90367	H120	0.25893	0.26434	0.44433
H67	0.06154	0.52984	0.1731	H17	0.85359	0.49853	0.55605	C146	0.54674	0.75917	0.64722
C85	0.02368	0.85425	0.24205	C15	0.77165	0.61452	0.73891	C148	0.50397	0.77233	0.73273
H69	0.0558	0.82222	0.24369	C17	0.73393	0.65517	0.78097	C150	0.50071	0.73563	0.81693
H71	0.02187	0.86799	0.13592	C19	0.69441	0.66561	0.7207	C152	0.52387	0.68756	0.76039
H73	0.02439	0.87859	0.31727	C21	0.69456	0.63983	0.60381	C154	0.56515	0.67411	0.66612
C87	0.04307	0.16633	0.31091	C23	0.73547	0.60177	0.55241	C156	0.57936	0.70946	0.62173
C89	0.07736	0.1687	0.40039	C25	0.77235	0.58855	0.62745	07	0.58706	0.63421	0.62447
C91	0.0261	0.24196	0.38993	H19	0.66414	0.69507	0.76123	09	0.55646	0.78891	0.60564
C93	0.00747	0.21639	0.3066	H21	0.73416	0.59845	0.33184	011	0.47889	0.74499	0.92931
H75	0.05639	0.14923	0.20726	C27	0.97931	0.5042	0.80625	C158	0.50721	0.65756	0.78437
H77	-0.00131	0.22921	0.20064	C29	0.93971	0.51167	0.75463	H122	0.52547	0.62332	0.73686
C95	0.04851	0.20799	0.50248	C31	0.93966	0.48691	0.6411	C160	0.62058	0.69779	0.56103
H79	0.06764	0.21845	0.56694	C33	0.97898	0.45454	0.57141	H124	0.62927	0.72459	0.52804
H81	0.0253	0.20089	0.57414	C35	0.01872	0.44199	0.63238	C162	0.46768	0.8144	0.73122
C97	0.10132	0.18981	0.30395	C37	0.01933	0.46538	0.75402	H126	0.43911	0.82115	0.80369
H83	0.11615	0.17194	0.20201	H23	1.00149	0.55102	0.87316	N8	0.46749	0.66867	0.87515
C99	0.06603	0.23973	0.29422	H25	0.04908	0.41553	0.5804	H128	0.44306	0.70099	0.84858
1105				690	0 07004		0.40640	N10	0 45074	0 0/57/	0 61772
	0.05899	0.25167	0.18648	C39	0.97901	0.43345	0.43649	UT0	0.45974	0.64574	0.01773

H89	0.00122	0.27709	0.42723	H29	0.94476	0.44656	0.40561	N12	0.65418	0.65059	0.5392
C101	0.12897	0.20732	0.36818	H31	0.99886	0.44153	0.35418	C165	0.33127	0.43741	0.72783
C103	0.17394	0.19339	0.33553	C41	0.73593	0.68647	0.88643	H134	0.3369	0.43096	0.83898
C105	0.18677	0.22703	0.29524	H33	0.74658	0.66758	0.98391	H135	0.32172	0.41221	0.68961
C107	0.15455	0.27356	0.27636	H35	0.76023	0.69833	0.84704	C167	0.38258	0.69169	0.74527
C109	0.10895	0.28626	0.30426	H37	0.70309	0.71716	0.90929	H138	0.40241	0.69749	0.65744
C111	0.09695	0.25327	0.35587	C43	0.40169	0.02612	0.62372	H139	0.35292	0.69245	0.70505
H91	0.22161	0.2157	0.26785	C45	0.38338	0.07304	0.70118	H140	0.71569	0.56206	0.43039
H93	0.07535	0.36009	0.32207	C47	0.33017	0.05319	0.7528	C168	0.74002	0.57554	0.42213
C113	0.99929	0.12034	0.35039	C49	0.3646	0.0132	0.65498	H141	0.99033	0.51856	1.01034
C115	0.00839	0.15589	0.38353	H39	0.4122	0.0258	0.51158	H142	0.7738	0.5458	0.40394
C117	0.97594	0.20194	0.38263	H41	0.3518	0.00661	0.5612	H144	0.94516	0.56598	0.93565
C119	0.93268	0.21398	0.35575	C51	0.35909	0.06635	0.83173	C170	0.20234	0.15683	0.74576
C121	0.9217	0.17847	0.3365	H43	0.34016	0.09811	0.89709	H147	0.16872	0.18435	0.72601
C123	0.95513	0.13136	0.32596	H45	0.38096	0.0387	0.89929	H148	0.21022	0.12621	0.68086
H95	1.06004	0.07023	0.24166	C53	0.34486	0.10752	0.61727	C172	0.97902	0.53683	0.91248
H97	0.88759	0.1885	0.32101	H47	0.3531	0.10791	0.50371	H152	0.52208	0.95476	0.5043
C125	0.89955	0.26367	0.34215	C55	0.30808	0.09464	0.65649	C173	0.50966	0.96459	0.6144
H99	0.8955	0.28272	0.4397	H49	0.2932	0.08872	0.56666	H153	0.49627	1.0024	0.62706
H101	0.91138	0.27903	0.25573	H51	0.40879	0.08382	0.71863	H154	0.53768	0.94706	0.6801
H103	0.86662	0.26767	0.321	H53	0.30657	0.04498	0.8181	C27	-0.02069	0.5042	0.80625
C127	0.20702	0.1432	0.33283	C57	0.31454	0.1543	0.68123	C33	-0.02102	0.45454	0.57141
H105	0.20477	0.12819	0.43499	C59	0.30392	0.19722	0.62206	C35	1.01872	0.44199	0.63238
H107	0.19984	0.12483	0.25248	C61	0.25807	0.23003	0.6206	C37	1.01933	0.46538	0.75402
H109	0.24149	0.13776	0.30959	C63	0.22531	0.21728	0.66917	C43	0.40169	1.02612	0.62372
C129	0.90955	0.03413	0.34746	C65	0.23679	0.17239	0.71349	C49	0.3646	1.0132	0.65498
C131	0.88384	0.08016	0.28653	C67	0.28151	0.14181	0.7222	C71	0.43118	-0.017	0.69692
C133	0.83866	0.09255	0.24691	H55	0.19074	0.24122	0.65976	C73	0.39749	-0.02959	0.72102

Section S4: FTIR spectroscopic characterizations of as-synthesized COFs

Figure S13. FTIR spectra of ND-COF-1 synthesized in green solvent media. FTIR spectra of assynthesized ND-COF-1 demonstrated an appearance of characteristic stretches corresponding to the β ketoenamine-linked framework structures. Both C=O and C=C peaks have been highlighted for ready reference.

Figure S14. FTIR spectra of ND-COF-2 synthesized in green solvent media. FTIR spectra of assynthesized ND-COF-2 demonstrated an appearance of characteristic stretches corresponding to the β ketoenamine-linked framework structures. Both C=O and C=C peaks have been highlighted for ready reference.

Section S5: XPS profiles of as-synthesized COFs

Figure S15. X-ray photoelectron spectroscopy (XPS) profile of ND-COF-1. a) Full survey XPS profile shows three peaks at 284.80 (for C 1s), 399.80 (for N 1s), and 530.80 eV (for O 1s), respectively. b) Deconvoluted XPS profile for C 1s shows 284.27 eV is assigned to C=C of aromatic ring system, and shoulders appearing at 285.13 and 287.21 are assigned to C-O and C=O bonds, respectively. In addition, a satellite peak was also observed at 290.74 eV arises from the π - π * transitions. c) For N 1s XPS profile only one peak is appeared at 399.57 eV and is assigned to =C-NH bond of the framework. d) Analysis of O 1s XPS profile shows one peak at 530.34 and a shoulder at 532.19 eV are assigned to C=O and C=O bonds of the framework.

Figure S16. X-ray photoelectron spectroscopy (XPS) profile of a representative ND-COF-2. a) Full survey XPS profile shows three peaks at 284.71 (for C 1s), 399.71 (for N 1s), and 530.70 eV (for O 1s), respectively. b) Deconvoluted XPS profile for C 1s shows 284.24 eV is assigned to C=C of aromatic ring system, and shoulders appearing at 285.48 and 286.35 are assigned to C-O and C=O bonds, respectively. In addition, a satellite peak was also observed at 290.37 eV arises from the π - π * transitions. c) For N 1s XPS profile a peak appeared at 399.53 eV is assigned to =C–NH bond. The peak at 400.87 eV is attributed to the presence of another isomer of the monomer in the framework structure. d) Analysis of O 1s XPS profile shows one peak at 530.39 and a shoulder at 532.0 eV are assigned to C=O and C-O bonds of the framework.

Section S6: Thermal gravimetric analysis of as-synthesized COFs

Figure S17. Thermal gravimetric analysis (TGA) profile of the as-synthesized COFs shows the thermal stability up to ~380 °C.

Section S7: Analysis of nitrogen gas uptake BET isotherms and pore size distribution of ND-COFs

BET theory is an extension of Langmuir theory, which is widely used to determine the adsorption of gas molecule forming a monolayer on the solid surface. Monolayer formation is related to the physical adsorption of gas molecules on a solid surface. BET equation describes the relationship between numbers of gas molecules adsorbed at a given relative pressure and thus, serves as the basis for the measurement of the specific surface area of a material.

The BET equation is

$$\frac{1}{\nu[(p_o/p) - 1]} = \frac{c - 1}{\nu_m c} \left(\frac{p}{p_o}\right) + \frac{1}{\nu_m c}$$

where p and p_o are the equilibrium and the saturation pressure of adsorbents at the temperature of adsorption, v is the adsorbed gas quantity (for example, in volume units), and v_m is the monolayer adsorbed gas quantity, c is the BET constant.

Figure S18. Pore size distribution of COFs. Pore size distribution curves of a series of COFs calculated using the non-local density functional theory (NLDFT) model show similar pore size distribution for ND-COF-1 and ND-COF-2.

	ND-COF-1		ND-COF-2	
-	Theoretical	Experimental	Theoretical	Experimental
Unit cell_volume	10905.3	-	10972.2	-
Density	0.557057	-	0.59187	-
ASA_A ²	2478.85	-	2283.38	-
ASA_m ² /cm ³	2273.07	-	2081.06	-
ASA_m²/g	4080.51	794	3516.08	879

Table S7. Theoretical surface area measured for ND-COF-1 and ND-COF-2.

Figure S19. ND-COF-1 shows a pore size of 14.8 Å calculated from ABC crystal model.

Figure S20. ND-COF-2 shows a pore size of 14.8 Å calculated from ABC crystal model.

Section S8: Stability investigation of as-synthesized COFs

Figure S21. Chemical stability of ND-COF-1. The chemical stability of **ND-COF-1** was performed by immersing the COF in different solvents such as hexane, DMAc, MeOH, THF, Water, and acidic (3N HCl) and basic (3N NaOH) solution for 7 days. The images captured after 1 days suggest the high chemical stability of the COF in all these solvents. The chemical stability was observed maintained even after 7 days as shown above.

Figure S22. Chemical stability of ND-COF-2. The chemical stability of **ND-COF-2** was performed by immersing the COF in different solvents such as hexane, DMAc, MeOH, THF, Water, and acidic (3N HCl) and basic (3N NaOH) solution for 7 days. The images captured after 1 days suggest the high chemical stability of the COF in all these solvents. The chemical stability was observed maintained even after 7 days as shown above.

Figure S23. PXRD patterns of a) ND-COF-1 and b) ND-COF-2 treated with different solvents. Analysis of PXRD patterns of **ND-COF-1** and **ND-COF-2** suggest the high chemical stability in different organic solvents including acidic media. However, in the PXRD pattern measured for **ND-COF-2** treated in basic media displays additional number of sharp peaks along with characteristic COFs peak. This suggest that **ND-COF-2** is not stable and the framework disintegrate in the basic media.

Figure S24. FTIR spectra of ND-COF-1 after treating with different solvents. Analysis of FTIR spectra of **ND-COF-1** after treatment with different solvents include acidic and basic media suggest high stability and intact nature of the framework.

Figure S25. FTIR spectra of ND-COF-2 after treating with different solvents. Analysis of FTIR spectra of **ND-COF-2** after treatment with different solvents include acidic media suggest high stability and intact nature of the framework. However, as seen aforementioned in the PXRD pattern that the **ND-COF-2** is not stable in basic and the framework get disintegrate. In FTIR spectra there is a broadness in the NH stretch region when compared with the pristine COFs. This clearly suggest that the framework structure is disintegrated and the COF is not stable in basic media.

Section S9: References

- Chong, J. H.; Sauer, M.; Patrick, B. O.; MacLachlan, M. J. Highly Stable Keto-Enamine Salicylideneanilines. *Org. Lett.* 2003, 5 (21), 3823–3826. https://doi.org/10.1021/ol0352714.
- Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of Covalent Organic Frameworks. *Acc. Chem. Res.* 2015, 48 (12), 3053–3063. https://doi.org/10.1021/acs.accounts.5b00369.