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1 General experimental condition

All reagents are more than 98% pure and the solvent is A.R. It is used directly after
purchase. Unless otherwise stated, the reaction is carried out in air. The *H and 3C NMR
were recorded by Bruker 400 MHz spectrometer. The ICP-MS measurements were conducted
by Agilent 7800. The morphology of the materials was obtained on JEOL JEM-2010F High
Resolution Transmission Electron Microscope (HRTEM). The powder X-ray diffraction
(XRD) patterns were recorded by a D/max 2200 PC03030502 X-ray diffractometer using
Cu-Karadiation. Fourier transform infrared (FT-IR) spectra were recorded in the range of
400-4000 cm? wusing a Spectrum Two03040404 FT-IR spectrometer. The X-ray
photoemission (XPS) spectra were performed at room temperature using a Thermo
ESCALAB 250xi hemispherical electron energy analyzer. The solid-state NMR spectra were
obtained on Agilent 600M. Raman spectra were recorded using a laser at 785 nm to assess the
structure of the catalysts (Thermo Fisher DXR). The online infrared spectrum were obtained
by METTLER TOLEDO ReactIR™ iC10. The TA Q-600 thermogravimetric analysis (TGA)

was carried out under nitrogen with a temperature ramp of 10°C min.

1.1 Preparation of the 3-hydroxy polyaniline materials

3-hydroxy-aniline (20 mmol) and HCI (1M, 200 mL) were added to the reactor, stir at
room temperature until 3-hydroxy-aniline is dissolved. Then the (NH4)2S20s (1M, 20 mL)
were added, continuous stirring until the solution was completely blue-black (about 48
hours). Generated 3-hydroxy polyaniline was isolated by centrifugalization, washed by
deionized water and ethanol to neutral, vacuum dried at 60°C for 8 h, collection for use
(PANI-30H).
1.2 Preparation of the modified PANI-30H materials

PANI-30H (500 mg) and DMF (15 mL) were added to a 100 mL reactor, heat to 80<C to
react for 2 hours and then cool to room temperature. Add 1,1-carbonyldiimidazole (CDI: 5
mmol, 0.85 g) under the protection of argon, and continue to stir and react for 4 hours. Then
the propargyl ammonia (5 mmol) was added and stirred for 16 hours. Add NHsH20 (4 mL)
dropwise to the solution, after reacting for 1 hour, the solution is concentrated by rotary
evaporation to a viscous shape. Add ethanol (50 mL) and let stand for precipitation.

Generated modified PANI-30H materials were isolated by centrifugalization, washed by



deionized water and ethanol to neutral, vacuum dried at 60°C for 8 h, collection for use
(Mod-PANI-30H).
1.3 Preparation of the Cu/Pd@Mod-PANI-30H materials

Add DMF solution (1 mL) to the reaction flask containing Mod-PANI-30OH composite
material (200 mg), disperse uniformly by, and record it as A solution. Add PdCl; (10 mg)
and CuClz (10 mg) to the reaction flask containing hydrochloric acid (1M, 0.5 mL) and
DMF solution (0.5 mL), dissolve by ultrasonic, and record it as B solution. Then the
solution B were added to solution A, after mix well by ultrasonic for 20 min, let stand for 4
hours to react. The Cu/Pd@Mod-PANI-30H materials were isolated by centrifugalization,
washed by deionized water and ethanol, vacuum dried at 60°C, collection for use.
1.4 Typical procedure for the Sonogashira coupling reaction

To a 15 mL reaction tube, Arl (1.0 mmol), Phenylacetylene (1.2 mmol), EtsN (2 mmol),
H>0 (1.0 mL) and 5 mg of Cu/Pd@Mod-PANI-30H were added. The reaction mixture was
stirred at 80°C under air for 8 h. After the reaction, the catalyst was isolated by
centrifugalization, washed by deionized water and ethnol, vacuum dried at 60°C and then
reused in the next round of reaction. Organic phase was collected, add saturated salt water
(2 mL), extracted with ethyl acetate (3*5 mL), then the organic phase was dried with
anhydrous Na2SO4. The product was separated and purified by silica gel column

chromatography (eluent: Petroleum ether and Ethyl acetate).

1.5 Typical procedure for Suzuki—-Miyaura coupling reaction

Arl (1 mmol), phenylboronic acid (1.2 mmol), KzPO4 (1.2 mmol), H.O: EtOH=1:1 (2
mL) and 3 mg of Cu/Pd@Mod-PANI-30H. The reaction mixture was stirred at 80°C under
air for 5h. After the reaction, the catalyst was isolated by centrifugalization, washed by ethyl
acetate, and then the organic phase was collected. The product was separated and purified

by silica gel column chromatography (Eluent: Petroleum ether).



1.6 TON and TOF value calculation method

Number of moles of reactant conversion Dx*Y mxC
TON = , = (B=29) @
moles of catalyst active centers B M
TON
TOF = ————— (2)

Reaction time

TON is the turnover number, indicating the molar amount of reactants converted per unit
of active site (Eq. (1)). “D” represents the mole fraction of the reactants added (mmol), “Y”’
represents the conversion rate of the reactants, “m” represents the mass of the catalyst added
in the reaction (mg), “C” represents the percentage of active sites contained in the catalyst
(In this paper, the active center of the catalyst is approximately equal to the Pd content
obtained by ICP test), “M” represents the mass fraction of metal palladium. TOF is the
turnover frequency, represents the amount of reactant that is converted per unit time by the

unit active site (Eq. (2))”
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Figure S1. Cu/Pd@Mod-PANI-30H material



Figure S3. STEM image of the Cu/Pd@Mod-PANI-30H material
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Figure S4. The infrared spectrum of Cu/Pd@Mod-PANI-30H material
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Figure S5. The thermogravimetric test results of Cu/Pd@Mod-PANI-30H material



126.6

PANI-30OH

74.4 e

25.2

e’

152.3 Mod-PANI-30H
————-—-/J’

33.1

Cu/Pd@Mod-PANI-30H

112.9

-50 0 50 100 150 200 250 300
3C CP-MAS-NMR Spectra (ppm)
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Table S1. The content of palladium and copper in the catalyst

Entyr mo (g) Vo element Co,(pg/L) U] “ © W (%)
(pg/L)  (pglkg)

Fresh 0.0494 25 176 100 17600 8906883 0.89%
catalyst 0.0494 25 “ 175 100 17500 8856275 0.89%
Fresh 0.0494 25 400 100 40000 20242915 2.02%
catalyst 0.0494 25 P 403 100 40300 20394737 2.04%
Repeated  0.0615 25 102 100 10200 4146341 0.41%
6 times 0.0615 25 “ 103 100 10300 4186992 0.42%
Repeated  0.0615 25 341 100 34100 13861789 1.39%
6 times 0.0615 25 P 342 100 34200 13902439 1.39%

mMo: Sample quality

Vo: Constant volume

f: Dilution times

Co: Test solution element concentration
Ci: Digestion solution original solution element concentration

Cx: Sample element content

W%: Sample element content



Table S2. Condition optimization of Sonogashira reaction by Cu/Pd@Mod-PANI-30H catalysts 2

Cu/Pd@Mod-PANI-30OH
O=-0 0=
3

Solvent, Base, Air, 8h

1 2
Entry  Solvent Base Temp. Catalyst () Yield (%) ®
(°C)

1 CH3CN EtN 80 Cu/Pd@Mod-PANI-30H 45

2 CHsCN (i-Pr)2NEt 80 Cu/Pd@Mod-PANI-30H 17

3 CH:CN Cs2CO3 80 Cu/Pd@Mod-PANI-30H 21

4 CHsCN K3PO4 80 Cu/Pd@Mod-PANI-30H 15

5 CHsCN K2COs 80 Cu/Pd@Mod-PANI-30H Trace©
6 DMF EtzN 80 Cu/Pd@Mod-PANI-30H 56

7 NMP EtzN 80 Cu/Pd@Mod-PANI-30H 45

8 THF EtzN 80 Cu/Pd@Mod-PANI-30H 20

9 DMSO EtzN 80 Cu/Pd@Mod-PANI-30H 74

10 H.0 Etz:N 80 Cu/Pd@Mod-PANI-30H 90

11 EtOH Etz:N 80 Cu/Pd@Mod-PANI-30H 50

12 H.0 - 80 Cu/Pd@Mod-PANI-30H Trace ©
13 - Etz:N 80 Cu/Pd@Mod-PANI-30H 13

14 H.O Cs2CO3 80 Cu/Pd@Mod-PANI-30H 48

15 H.O K3POg4 80 Cu/Pd@Mod-PANI-30H 43

16 H20 EtzN 100 Cu/Pd@Mod-PANI-30H 68

17 H20 EtzN 60 Cu/Pd@Mod-PANI-30H 73

18 H20 EtzN RT Cu/Pd@Mod-PANI-30H 23

19 H20 EtzN 80 Cu/Pd@Mod-PANI-30H (2) 63

20 H20 EtzN 80 Cu/Pd@Mod-PANI-30H (10) 81

Reaction Conditions: 2 lodobenzene (1 mmol), Phenylacetylene (1.2 mmol), Solvent (1.0 mL), Base (2.0
eq), react for 8 hours at air atmosphere; ° Isolated yields; ¢ Yield <3%.

In order to explore the catalytic performance of Cu/Pd@Mod-PANI-30H composite
material, the sonogashira coupling reaction of iodobenzene and phenylacetylene was
selected as the probe. The results of the optimization of the reaction conditions are shown in
Table 1. Firstly, the different kinds of bases were screened (Table S2, entries 1-5), and it was
found that the organic base triethylamine has the best catalytic effect. According to our
previous research, triethylamine has a special reducing effect, which can reduce the divalent
palladium to zero valence under a specific environment, thereby improving the catalytic

10



activity. Next, the solvent effect of different solvents with triethylamine as the base was
investigated (items 6-11), and the results showed that this type of reaction can be carried out
in different solvents, especially when water is used as the solvent, the yield of 90% can be
obtained (entry 10). This phenomenon occurs because the material contains a large number
of hydroxyl and amide bonds, so the material will have better hydrophilic properties. In
addition, the presence of a large number of carbon branches in the material structure will
make the surface of the material rougher, which is conducive to the adsorption and contact
of the reaction substrate, thereby realizing water phase catalysis. The blank experiment
confirms that both solvent and base are necessary in the reaction process (entries 12, 13).
Subsequently, we optimized the reaction temperature and the amount of catalyst separately
(Table S2), and finally determined the optimal reaction conditions as follows: by using
water as the solvent and triethylamine as the base, 90% yield can be obtained by reacting at
80<C after 8 hours. During the reaction, only 0.094 mol% of palladium needs to be added,
which is much lower than the value given in most reported literatures. The reason for this
phenomenon is that the metal copper and palladium are uniformly distributed in the
Pd@Mod-PANI-30H micro-nano reactor. The surface of the micro-nano reactor provides a
place for the adsorption and transformation of the reactant molecules, and the metal inside
the reactor promotes the ability of the material to transmit electrons, so the

Pd@Mod-PANI-30H micro-nano reactor exhibits such excellent catalytic activity.
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The definitions and calculations of yield, conversion and selectivity.

Reaction conditions: lodobenzene (1 mmol), Phenylacetylene (1.2 mmol). As shown in
the diagram, the three products of the reaction are present, the self-coupling product
(Marked as 4 and 5) and the cross-coupling product (Marked as 3). Their molecular weights
are denoted by Mz, M4 and Ms respectively. After the reaction was completed, the product
was separated and purified by silica gel column chromatography. Three products were
obtained with masses ms (161 mg, 0.9 mmol), ms4 (5 mg, 0.032 mmol), ms (8 mg, 0.039

mmol), respectively. Where ms is the cross-coupling product of the target.

P
J

Cu/Pd@Mod-PANI-3OH
O =0 -0=0

H,0, Et3N, Air, 8h

1 2
3
7 NN — — [
—/ — — \
5

Figure S8. Sonogashira reaction catalysis by Cu/Pd@Mod-PANI-30H
1. Conversion rate calculation scheme
lodobenzene is used as the basis for calculating the conversion. Since iodobenzene is a
liquid and cannot easily be weighed accurately at the end of the reaction, the amount of
iodobenzene consumed to produce products 3 and 4 is used as a proxy for the amount of
iodobenzene converted. The conversion rate can be calculated using Formula 1.

Conversion of lodobenzene:

(2) + (32 =2) 17808) * (15208 %2)
+ a2 % 2 + X2
M 1 3/14 < 100% = (178.08) 154.08 < 100%
' 0.964
= 1 x 100%
= 96.4% (1)

2. The calculation method of Selectivity

As an example, selectivity is calculated to generate target compound 3.

12



Selectivity of 1,2-diphenylethyne:

M 0.9 0.9
2 = = X 100%
(m3) n (m4 % 2) 0.9+ (0.032x2)  0.964
M; M,
=93.4%

3. The calculation method of Yield

As an example, yield is calculated to generate target compound 3.

m
Yield (1,2 — diphenylethyne): f X 100% = x 100% = 90.4%
3

178.08

(2)

(3)

Because of the extremely low amounts of products 4 and 5 during the reaction, the

catalytic performance of the catalysts is still mainly described in terms of yield in the paper.

Figure S9. The picture of the reaction state
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Table S3. Sonogashira coupling reaction of aryl iodide and phenylacetylene over

Cu/Pd@Mod-PANI-30H catalysts °.

R@" . :_QR H,0, Air O _ O

i ;  Et;N,8h,80°C R

1 2 3
)= )= A=A~ )= )=
3a, Yield= 90 % 3b, Yield= 71 % 3c, Yield= 90 % 3d, Yield= 76 % 3e, Yield= 78 %
& )= )5 & )= )-oN & )= )-No, & =) =)
31, Yield= 75 % 3g, Yield= 95 % 3h, Yield= 18 % 3i, Yield= 84 % 3}, Yield= 75 %

NH _ _ = O
o=  ©O=0 = O=0-0 =
3K, Yield= 92 % 31, Yield= 84 % 3m, Yield= 77 % 3n, Yield= 71 % 30, Yield= 80 %

FA )= )-OMe  ci—{ )—=—( )-OMe Meo—{ )—=—( )-OMe NC—\ )—=— )-OMe ON—{ )—=—( )-OMe
3p, Yield= 86 % 3q, Yield=83 % 3r, Yield= 63 % 3s, Yield= 87 % 3t, Yield= 30 %

_ cl cl = OMe o
HO_OMe:OMe & )= )-OMe 8 Y L=
3u, Yield= 78 % 3v, Yield= 87 % 3w, Yield= 90 % 3x, Yield= 78% 3y, Yield= 72 %
&)=/ &)= ) & )= )-ome C )= )-c
X=Br X=Br X=Br X=Br
32, Yield= 51 % 32,, Yield= 53 % 32,, Yield= 60 % 32,, Yield= 37 %

Reaction Conditions: ? lodobenzene (1 mmol), Phenylacetylene (1.2 mmol), H20 (1.0 mL),
EtsN (2.0 eq), react for 8 hours at air atmosphere; ® Isolated yields.

After obtaining the optimal reaction conditions, we investigated the universality of the
catalytic Sonogashira reaction of Cu/Pd@Mod-PANI-30H catalyst. It was found that the
substituent group on the benzene ring has a certain influence on the reaction. When
changing the substituents on the phenylacetylene, it can be found that the reaction yield of
the electron-donating group is generally better than that of the electron-withdrawing group
(Table S3, 3b-3h). This is because when the electron-donating group is introduced into the
phenylacetylene, the electron cloud density on the benzene ring will increase, so that the H
atom of the terminal alkynyl group in the phenylacetylene is easily activated. Moreover, we
found that when different halogens are used as the substituent groups, the reaction yield
does not change much (Table S3, 3d-3f, 75-78%), but when the cyano group is used as the

substituent group, the reaction effect is particularly excellent (Table S3, 3g, 95%). Of course,
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the reactivity of some heterocyclic alkynes has also been studied, and it has been found that
2-thiophene alkynes can react better (Table S3, 3I, 84%). Unfortunately, when
2-alkynylpyridine was used as the substrate, the target compound was not obtained. The
steric hindrance of different functional groups does not affect the catalytic activity of the
catalytic system. For example, when 2-Ethynyl-9,9-Dimethyl-9H-Fluorene is used as the
substrate, 80% vyield can still be obtained (Table S3, 30). In addition, different substituent
groups on halogenated aromatic hydrocarbons have also been investigated, and the result
shows that the reactivity of the electron-withdrawing group on the halogenated aromatic
hydrocarbon is stronger than that of the electron-donating group (Table S3, 3p-3u). When
the substituent group is chlorine, the relationship of catalytic activity is: ortho
position>meta position>para position. Under the original reaction conditions, when
brominated aromatic hydrocarbons are used as the reaction substrate, the results show that

the reaction can proceed smoothly (Table S3, 3Z1-Z4).
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Table S4. Suzuki coupling reactions of aryl iodide and aryl bromide over
Cu/Pd@Mod-PANI-30H catalysts 2
CuPd@Mod-PANI-30H

R1—X + (HO)zB_RZ ' R1—R2
H,0-EtOH, K;P04, 80°C,1.5 h

Entry 1(Ry) 2(R2) Product(Rs) Yield (%)° TOF (h)
1 OI Ph 1,1'-biphenyl 93 659.6
2 FO' Ph 4-fluoro-1,1'-biphenyl 93 659.6
3 MeoO| Ph 4-methoxy-1,1'-biphenyl 95 673.7
4 ©/I Ph 2-phenylthiophene 85 602.8
5 OI 4-MeCeHs  4-methyl-1,1"-biphenyl 86 609.9
6 OI 4-FCeHa4 4-fluoro-1,1'-biphenyl 98 695.0
! OI 4-CICeHs  4-chloro-1,1'-biphenyl 89 631.2
8 MeOOBr Ph 4-methoxy-1,1"-biphenyl ~ 87 617.0
3 CIOB" Ph 4-chloro-1,1'-biphenyl 62 439.7
10 QBr Ph 1,1'-biphenyl 83 588.6

Reaction Conditions: 21 mmol of R-X, 1.2 mmol of phenylboronic acid, 1.2 mmol of KzPO4, 2 mL of

solvent (H,0:EtOH=1:1), CuPd@Mod-PANI-30H (0.094 mol% Pd), 80 ‘C. ° Isolated yields.

In addition to the Sonogashira reaction, the catalytic performance of the
Cu/Pd@Mod-PANI-30H composite material in the Suzuki coupling reaction was also
tested (Table S4). After simple optimization of conditions, the reaction was carried out in a
relatively clean ethanol-water system, and the corresponding target compound could be

obtained with a yield of 95% within 1.5 hours. The reactant molecules of different
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substituent groups can be reacted, and the yield is between 85-98%. Furthermore, the
reaction product of brominated aromatics was obtained with a yield of 62-87% (Table S4).
The CuPd@Mod-PANI-30H nanoreactor catalyst can be reused at least 8 times in the
Suzuki coupling reaction. This is a gratifying result, because it once again proves that
CuPd@Mod-PANI-30H composite material has a wide range of application value in the

field of green organic synthesis.

17



Table S5. The quality of the catalyst changes during use

Repeated Addamount  Recycling quality = Change value Change value
times (mg) (mg) (mg) (%)

1 201.3 208.5 +7.2 +3.57
2 200.6 197.0 -3.6 -1.79
3 201.8 196.5 -5.3 -2.63
4 201.4 194.7 -6.7 -3.33
5 200.3 192.5 -7.8 -3.89
6 200.6 193.3 -7.3 -3.63

18
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Figure S10. A possible mechanism for Sonogashira coupling reaction over

Cu/Pd@Mod-PANI-30H catalyst

A possible mechanism for Sonogashira coupling reaction over Cu/Pd@Mod-PANI-30H
catalyst is shown in Figure S10. The catalytic process can be divided into two steps: the
palladium cycle and copper cycle. The copper cycle only promotes and accelerates the
reaction, because it cannot complete the entire catalytic process alone (Figure 4). Firstly, the
Cu/Pd@Mod-PANI-30H composite material undergoes reduction under the action of a
nitrogen-containing organic base (triethylamine) to produce a true active center zero-valent
palladium. Then zero-valent palladium undergoes an oxidative insertion reaction with
iodobenzene, which is one of the raw materials for the reaction. At the same time,
phenylacetylene generates active intermediate of phenylethynylcopper(l) on the metal
copper in the catalyst through the action of alkali. Next, the activated phenylacetylene group
is transported to the metal palladium to undergo a reduction and elimination reaction.

During this period, the metal palladium and copper are removed to participate in the next

19



cycle, and the final product 1,2-diphenylacetylene is produced at the same time. It is worth
mentioning that the process can also be carried out without copper, and phenylacetylene is
directly involved in the circulation through the insertion reaction with palladium by step 2
(it can be confirmed by the result of Figure 4). However, the energy required for the
reaction in step 2 is higher than that in step 1, so the reaction yield of the
Pd@Mod-PANI-30H catalyst is only 71%, and the reaction vyield of the
Cu/Pd@Mod-PANI-30H catalyst can be increased to 90%. In addition, the modified
polyaniline material in the composite catalyst not only functions as a support for the carrier,
but also functions as a macromolecular organic ligand, which synergistically improves the

reactivity together with copper and palladium atoms.
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3 Characterization data of the products:

1,2-diphenylethyne (Table 2, 3a): White solid, 90%. *H NMR (400 MHz, CDCl3) & 7.67 (dd, J = 7.3,

2.5 Hz, 4H), 7.45 (p, J = 4.1, 3.3 Hz, 6H). 3C NMR (100 MHz, CDCl3) & 131.54, 128.28, 128.19, 123.20,
89.37.

1-methyl-4-(phenylethynyl)benzene (Table 2, 3b): White solid, 71%. 1H NMR (400 MHz, CDCls) &
7.45 (dd, J=37.0, 7.5 Hz, 4H), 7.26 (d, J = 7.3 Hz, 3H), 7.08 (d, J = 7.6 Hz, 2H), 2.28 (s, 3H). 13C NMR

(100 MHz, CDCI3) & 138.23, 131.44, 131.40, 129.03, 128.22, 127.97, 123.39, 120.10, 89.58, 88.72,
21.34.

O==
1-methoxy-4-(phenylethynyl)benzene (Table 2, 3c): White solid, 90%. 1H NMR (400 MHz, CDCls) &
7.52 (ddt, J = 16.3, 6.4, 1.6 Hz, 4H), 7.41 — 7.28 (m, 3H), 6.97 — 6.82 (m, 2H), 3.83 (s, 3H). 13C NMR

(100 MHz, CDCI3) & 159.56, 133.01, 131.40, 128.27, 127.90, 123.54, 115.31, 113.95, 89.34, 88.03,
55.24,55.22.

O—=—
1-fluoro-4-(phenylethynyl)benzene (Table 2, 3d): White solid, 76%. 1H NMR (400 MHz, CDCl3) &
7.50 (ddt, J=9.1,5.7, 2.7 Hz, 4H), 7.33 (q, J = 3.4, 2.2 Hz, 3H), 7.02 (t, J = 8.5 Hz, 2H). 13C NMR (100

MHz, CDCI3) § 163.69, 161.21, 133.48, 133.40, 131.52, 128.34, 128.30, 123.05, 119.34, 119.31, 115.71,
115.49, 89.02, 88.27.

=

1-chloro-4-(phenylethynyl)benzene (Table 2, 3e): White solid, 78%. 1H NMR (400 MHz, CDCls) &
7.89 (dt, J = 6.0, 3.8 Hz, 2H), 7.82 (d, J = 8.2 Hz, 2H), 7.74 — 7.65 (m, 5H). **C NMR (100 MHz, CDCls)
8 134.20, 132.76, 131.56, 128.65, 128.44, 128.36, 122.88, 121.72, 90.29, 88.22.

D=
1-bromo-4-(phenylethynyl)benzene (Table 2, 3f): White solid, 75%. *H NMR (400 MHz, CDCls) &
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7.49 (dd, J = 6.6, 3.0 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.35 — 7.25 (m, 5H). 3C NMR (100 MHz, CDCl5)
5 132.89, 131.48, 128.39, 128.29, 122.80, 122.38, 122.09, 90.48, 88.31.

O=<o

4-(phenylethynyl)benzonitrile (Table 2, 3g): White solid, 95%. 1H NMR (400 MHz, CDCls) 6 7.55 (d,
J =6.9 Hz, 6H), 7.41 — 7.32 (m, 3H). 3C NMR (100 MHz, CDCls) & 131.74, 131.71, 131.50, 128.88,
128.26, 127.81, 121.91, 118.23, 111.11, 93.51, 87.56.

D=

1-nitro-4-(phenylethynyl)benzene (Table 2, 3h): Yellow solid, 18%. 1H NMR (400 MHz, CDCl3) &
8.21 (d, J=8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.56 (dd, J = 7.0, 2.7 Hz, 2H), 7.39 (d, J = 5.2 Hz, 3H).
13C NMR (100 MHz, CDCls) & 146.89, 132.21, 131.79, 130.20, 129.24, 128.50, 123.58, 122.03, 94.66,
87.51.

1-ethyl-4-(phenylethynyl)benzene (Table 2, 3i): Oily liquid, 84%. *H NMR (400 MHz, CDCls) § 7.55
—7.47 (m, 2H), 7.47 — 7.40 (m, 2H), 7.32 — 7.23 (m, 3H), 7.12 (d, J = 7.8 Hz, 2H), 2.59 (q, J = 7.6 Hz,

2H), 1.19 (td, J = 7.6, 1.3 Hz, 3H). 3C NMR (100 MHz, CDCls) & 144.54, 131.52, 131.47, 128.23,
127.98, 127.84, 123.43, 120.37, 89.59, 88.71, 28.74, 15.27.

1-(phenylethynyl)-4-propylbenzene (Table 2, 3j): Light yellow liquid, 75%. *H NMR (400 MHz,
CDCl3) 8 7.54 (dt, J=7.1, 1.7 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.34 — 7.23 (m, 3H), 7.12 (d, J = 7.8 Hz,
2H), 2.56 (t, J = 7.7 Hz, 2H), 1.62 (h, J = 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H).13C NMR (100 MHz,
CDCl3) 6 143.00, 131.46, 131.43, 128.43, 128.22, 127.96, 123.44, 120.38, 89.60, 88.74, 37.85, 24.25,
13.68.

NH»

3-(phenylethynyl)aniline (Table 2, 3k): Brown solid, 92%. 'H NMR (400 MHz, CDCls) & 7.56 — 7.44
(m, 2H), 7.27 (d, J = 6.0 Hz, 3H), 7.07 (t, J = 7.8 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 2.3 Hz,
1H), 6.55 (dd, J = 8.2, 2.4 Hz, 1H), 3.58 (s, 2H). 3C NMR (100 MHz, CDCls) & 146.20, 131.38, 129.11,
128.18, 128.03, 123.57, 123.06, 121.70, 117.55, 115.22, 89.62, 88.66.
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2-(phenylethynyl)thiophene (Table 2, 3I): White solid, 84%. 'H NMR (400 MHz, CDCls) § 7.55 — 7.44

(m, 2H), 7.31 (d, J = 5.2 Hz, 3H), 7.25 (dd, J = 8.4, 4.4 Hz, 2H), 6.97 (t, J = 4.5 Hz, 1H). °C NMR (100
MHz, CDCls) 5 131.84, 131.34, 128.36, 128.31, 127.20, 127.05, 123.23, 122.84, 93.01, 82.61.

/S

- —
3-(phenylethynyl)thiophene (Table 2, 3m): White solid, 77%. 'H NMR (400 MHz, CDCls) & 7.55 —
7.46 (m, 3H), 7.34 — 7.27 (m, 3H), 7.24 (t, J = 4.2 Hz, 1H), 7.18 (d, J = 4.9 Hz, 1H). *C NMR (100 MHz,
CDCl3) 6 131.46, 129.80, 128.56, 128.29, 128.15, 125.32, 123.13, 122.21, 88.86, 84.51.

4-(phenylethynyl)-1,1'-biphenyl (Table 2, 3n): White solid, 71%. *H NMR (400 MHz, CDCls) & 7.66 —
7.53 (m, 8H), 7.46 (t, J = 7.5 Hz, 2H), 7.42 — 7.30 (m, 4H). *C NMR (100 MHz, CDCl3) & 140.94,
140.33, 132.01, 131.60, 128.85, 128.35, 128.26, 127.62, 127.01, 123.27, 122.15, 90.04, 89.28.

9,9-dimethyl-2-(phenylethynyl)-9H-fluorene (Table 2, 30): Oily liquid, 80%. 'H NMR (400 MHz,
CDCls) 8 7.75 - 7.65 (m, 2H), 7.61 (d, J = 1.3 Hz, 1H), 7.54 (ddt, J = 15.1, 7.8, 1.7 Hz, 3H), 7.46 — 7.38
(m, 1H), 7.40 — 7.27 (m, 5H), 1.49 (s, 6H). 3C NMR (100 MHz, CDCls) & 153.97, 153.66, 139.50,
138.58, 131.64, 130.79, 128.42, 128.22, 127.75, 127.18, 125.98, 123.48, 122.72, 121.72, 120.35, 120.02,
90.32, 89.51, 46.92, 27.10.

1-fluoro-4-((4-methoxyphenyl)ethynyl)benzene (Table 2, 3p): White solid, 86%. 'H NMR (400 MHz,
CDCl3) 6 7.54 — 7.41 (m, 4H), 7.04 (t, J = 8.5 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 3.82 (d, J = 1.2 Hz, 3H).
13C NMR (100 MHz, CDCls) & 163.48, 161.00, 159.61, 133.27, 133.18, 132.95, 119.66, 119.62, 115.63,
115.41, 115.10, 113.97, 89.00, 88.98, 86.94, 55.20.

1-chloro-4-((4-methoxyphenyl)ethynyl)benzene (Table 2, 3q): White solid, 83%. 'H NMR (400 MHz,
CDCl3) 6 7.49 — 7.38 (m, 4H), 7.33 — 7.25 (m, 2H), 6.92 — 6.81 (m, 2H), 3.82 (s, 3H). *C NMR (100
MHz, CDCl3) § 159.75, 133.83, 133.04, 132.61, 128.61, 122.09, 114.97, 114.02, 90.33, 86.96, 55.28.
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1,2-bis(4-methoxyphenyl)ethyne (Table 2, 3r): White solid, 63%. *H NMR (400 MHz, CDCls) & 7.46
(d, J=8.5Hz, 4H), 6.87 (d, J = 8.4 Hz, 4H), 3.82 (s, 6H). 13C NMR (100 MHz, CDCls) § 159.34, 132.84,
115.66, 113.92, 87.91, 55.26, 55.24.

4-((4-methoxyphenyl)ethynyl)benzonitrile (Table 2, 3s): White solid, 87%. 'H NMR (400 MHz,
CDCl3) 8 7.60 (q, J = 8.3 Hz, 4H), 7.53 — 7.42 (m, 2H), 6.96 — 6.79 (m, 2H), 3.84 (s, 3H). *C NMR (100
MHz, CDCl3) 6 160.25, 133.34, 131.99, 131.82, 128.61, 118.63, 114.21, 114.14, 110.99, 94.07, 86.70,
55.33.

/
on =i )

1-methoxy-4-((4-nitrophenyl)ethynyl)benzene (Table 2, 3t): Light yellow solid, 30%. *H NMR (400
MHz, CDCl3) 6 8.23 — 8.07 (m, 2H), 7.65 — 7.54 (m, 2H), 7.52 — 7.41 (m, 2H), 6.95 — 6.82 (m, 2H), 3.83
(d, J = 1.3 Hz, 3H). C NMR (100 MHz, CDCls) & 160.34, 146.56, 133.36, 131.89, 130.59, 123.53,
114.12, 114.00, 95.09, 86.58, 55.27.

o=

4-((4-methoxyphenyl)ethynyl)phenol (Table 2, 3u): White solid, 78%. *H NMR (400 MHz, CDCls) §
7.56 — 7.30 (m, 4H), 6.96 — 6.68 (m, 4H), 5.00 (s, 1H), 3.82 (s, 3H).'*C NMR (100 MHz, CDCls3) &
159.39, 155.39, 133.12, 132.91, 116.00, 115.68, 115.49, 114.01, 87.98, 87.84, 55.34.

Cl
D=

1-chloro-3-((4-methoxyphenyl)ethynyl)benzene (Table 2, 3v): White solid, 87%. *H NMR (400 MHz,
CDCl3) 6 7.51 — 7.40 (m, 3H), 7.35 (dd, J = 7.4, 1.6 Hz, 1H), 7.28 — 7.16 (m, 2H), 6.88 — 6.79 (m, 2H),
3.76 (d, J = 1.4 Hz, 3H). 3C NMR (100 MHz, CDCls) § 159.78, 134.02, 133.07, 131.15, 129.44, 128.03,
125.28, 114.70, 113.97, 90.64, 86.67, 55.15, 55.14.

Cl
=

1-chloro-2-((4-methoxyphenyl)ethynyl)benzene (Table 2, 3w): White solid, 90%. *H NMR (400 MHz,
CDCl3) 6 7.55 — 7.41 (m, 3H), 7.38 (dt, J = 5.4, 3.7 Hz, 1H), 7.23 — 7.11 (m, 2H), 6.92 — 6.75 (m, 2H),
3.77 (d, J = 1.4 Hz, 3H). $3C NMR (100 MHz, CDCl3)  159.83, 135.54, 133.13, 132.92, 129.14, 128.82,
126.36, 123.40, 114.85, 113.94, 94.64, 84.93, 55.17, 55.16.
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1-((4-methoxyphenyl)ethynyl)naphthalene (Table 2, 3x): White solid, 78%. 'H NMR (400 MHz,
CDCl3) 6 8.46 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.73 (t, J = 8.3 Hz, 2H), 7.59 — 7.49 (m, 3H),
7.50 — 7.42 (m, 1H), 7.42 — 7.33 (m, 1H), 6.91 — 6.71 (m, 2H), 3.69 (d, J = 1.6 Hz, 3H).*C NMR (100
MHz, CDCl3) 6 159.62, 133.12, 133.01, 129.97, 128.31, 128.21, 126.59, 126.28, 126.16, 125.21, 121.15,
115.34, 113.97, 94.40, 86.20, 55.09, 55.08.

1-(4-((4-chlorophenyl)ethynyl)phenyl)ethan-1-one (Table 2, 3y): White solid, 72%. *H NMR (400
MHz, CDCl3) 6 7.92 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.33 (d, J =
8.1 Hz, 2H), 2.62 — 2.56 (m, 3H). *C NMR (100 MHz, CDCls) § 197.13, 136.23, 134.78, 132.85, 131.59,
128.72,128.20, 127.67, 121.04, 91.40, 89.44, 26.53.

17a-Ethinylestradiol (Scheme 2, raw material): White solid. *H NMR (400 MHz, DMSO-ds) &
8.99 (s, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.56 — 6.36 (m, 2H), 5.34 (s, 1H), 3.31 (s, 1H), 2.78 — 2.58 (m, 2H),
2.28 (dg, J =12.9, 3.7 Hz, 1H), 2.08 (dddd, J = 26.2, 14.3, 9.5, 4.4 Hz, 2H), 1.93 — 1.72 (m, 3H), 1.72 —
1.54 (m, 3H), 1.27 (dtg, J = 23.6, 11.7, 5.1 Hz, 4H), 0.76 (s, 3H).*C NMR (100 MHz, DMSO-ds) &
154.89, 137.08, 130.25, 126.04, 114.87, 112.69, 88.92, 78.12, 74.96, 48.95, 46.65, 43.28, 39.19, 38.77,
32.55, 29.16, 26.99, 26.11, 22.44, 12.70.

17a-(phenylethynyl)-Estradiol (Scheme 2, product): White solid, 56%. ‘H NMR (400 MHz,
DMSO-ds) 6 9.01 (s, 1H), 7.52 — 7.29 (m, 5H), 7.07 (d, J = 8.5 Hz, 1H), 6.58 — 6.37 (m, 2H), 5.48 (s,
1H), 2.84 — 2.62 (m, 2H), 2.33 (dd, J = 13.3, 3.8 Hz, 1H), 2.22 (ddd, J = 13.6, 8.8, 5.4 Hz, 1H), 2.16 —
2.05 (m, 1H), 2.05 - 1.61 (m, 6H), 1.30 (dh, J = 23.7, 8.5, 5.8 Hz, 4H), 0.82 (s, 3H). 3C NMR (100 MHz,
DMSO-ds) 6 155.39, 137.61, 131.68, 130.71, 129.09, 128.62, 126.59, 123.42, 115.39, 113.21, 95.54,
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84.50, 79.06, 49.85, 47.73, 43.88, 39.41, 33.40, 29.70, 27.48, 26.72, 23.08, 13.39.

O~

4-fluoro-1,1'-biphenyl (Table S4, entry 2): White solid, 93%. *H NMR (400 MHz, CDCls) 6 7.49 (d, J
=7.5Hz, 4H), 7.38 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 8.5 Hz, 2H). 3C NMR (100
MHz, CDCls) 5 163.83, 161.38, 140.35, 137.46, 137.43, 128.97, 128.85, 128.77, 127.41, 127.15, 115.86,
115.64. known compound

O~

4-methoxy-1,1'-biphenyl (Table S4, entry 3): White solid, 95%.'H NMR (400 MHz, CDCls) § 7.42 (t,
J=9.2Hz, 4H), 7.29 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 8.2 Hz, 2H), 3.70 (s, 3H).
13C NMR (100 MHz, CDCls3) § 159.06, 140.72, 133.64, 128.67, 128.07, 126.65, 126.59, 114.12, 55.21.
known compound.

2-phenylthiophene (Table S4, entry 4): White solid, 85%.'H NMR (400 MHz, CDCls) § 7.59 (dd, J =
7.6, 2.3 Hz, 2H), 7.34 (td, J = 7.7, 2.0 Hz, 2H), 7.29 — 7.19 (m, 3H), 7.03 (p, J = 2.6 Hz, 1H).*C NMR
(100 MHz, CDCls) 6 144.34, 134.31, 128.82, 127.95, 127.39, 125.87, 124.74, 123.01. known compound.

3

4-methyl-1,1'-biphenyl (Table S4, entry 5): White solid, 86%.'H NMR (400 MHz, CDCls) § 7.55 (dt, J
=7.0, 1.9 Hz, 2H), 7.47 (dt, J = 8.1, 1.9 Hz, 2H), 7.39 (tt, J = 8.0, 1.7 Hz, 2H), 7.29 (ddd, J = 9.0, 5.3,
1.7 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 2.36 (t, J = 1.6 Hz, 3H).3C NMR (100 MHz, CDCls) & 141.08,
138.28, 136.93, 129.44, 128.67, 126.94, 126.92, 21.05. known compound

O~

4-chloro-1,1'-biphenyl (Table S4, entry 7): White solid, 89%. *H NMR (400 MHz, CDCls) § 7.52 —
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7.47 (m, 2H), 7.47 — 7.43 (m, 2H), 7.44 — 7.26 (m, 5H).23C NMR (100 MHz, CDCls3) & 139.86, 139.55,
133.30, 128.83, 128.32, 127.53, 126.90. known compound.
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