Supporting Information

Salt-Induced Conformational Switching of a Flat Rectangular DNA Origami Structure

Kristina Hübner¹, Mario Raab¹, Johann Bohlen¹, Julian Bauer¹, Philip Tinnefeld¹

¹ Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377 München, Germany

1. DNA Origami Structure

The DNA origami structure was designed using the CaDNAno software.¹ A 7249-nucleotide long single stranded DNA sequence (scaffold) from the M13mp18 bacteriophage was folded into the designed 71 x 85 nm rectangular shape by the help of short single stranded staple strands. The staple strands were mixed with the scaffold strand in a 10-fold excess. Unmodified staple strands were purchased from IDT, biotinylated strands, nanoparticle binding strands and the ATTO 647N strand were purchased from Eurofins Genomics GmbH. The DNA origami structures were folded using a temperature ramp starting at 70 °C held for 5 min and then the temperature was stepwise decreased with a gradient of 1 °C per minute down to 25 °C. After the folding process, excess staple strands were removed from the sample by gel electrophoresis. Therefore, a 1.5% agarose gel (Biozym LE Agarose) was prepared. A gel electrophoresis chamber was filled with the running buffer (0.5xTAE 11 mM MgCl₂) and the pockets of the gel were loaded with the unpurified samples and a 10x BlueJuiceTM Gel loading buffer (Thermo Fischer Scientific). The cooled electrophoresis ran at 80 V for 90 min, afterwards the bands containing the purified DNA origami structures were cut out and squeezed with a glass slide to retrieve the purified DNA origami structures. The final concentration of the sample was determined on a Nanodrop 2000 spectralphotometer (Thermo Fischer Scientific).

In order to proof the correct folding and to validate that the rectangular structure of the DNA origami was also stable in the CaCl₂ buffer, AFM images were acquired (Figure S1).

Figure S1: AFM images of the purified rectangular DNA origami structures (NRO) at 12 mM MgCl₂ (a) and at 8 mM CaCl₂ (b).

For the AFM measurements a Nanowizard 3 ultra (JPK, Berlin) equipped with a cantilever (BL-AC-40TS, Olympus, Japan) was used. The mica surface (plano, Berlin) was cleaved with

adhesive tape and incubated for 5 min with 10 μ L 0.01 M NiCl2 solution to positively charge the surface. After incubation, the surface was cleaned three times with 300 μ L ultrapure water and gently dried under a constant air flow. The DNA origami solution was diluted with AFMbuffer (40 mM Tris, 2 mM EDTA, 12.5 mM Mg(OAc)₂ • 6 H₂O) to a final concentration of 1 nM, added to the mica surface and incubated for 5 min. The mica surface afterwards was washed three times with 300 μ L AFM-buffer and filled up to a volume of 1.2 mL AFM-buffer. 3 x 3 μ m images were taken with a scanning speed of 1 Hz and a resolution of 512x512 pixels. The images were processed with the JPK data Processing software (JPK, Berlin).

2. Gold Nanoparticle Functionalization

Gold nanoparticles (Au NP) were decorated with single stranded DNA sequences for attachment to DNA origami structures. For this purpose, 2 mL of 10 nm Au NPs were mixed with 20 μ L 10% Tween20 and 20 μ L potassium phosphate buffer (4:5 mixture of 1 M monobasic and dibasic potassium phosphate, Sigma Aldrich). The mixture was heated to 40 °C and 30 μ L of 2 nmol thiol-modified single stranded DNA functionalized at the 3'-end (T₂₅, Ella Biotech) were added. A salting procedure to reach a final concentration of 750 mM NaCl was carried out by adding a 1xPBS buffer with 3300 mM NaCl every 3 minutes. After salting, unbound DNA strands were removed by centrifugation at 14000 g for 45 min. In this step, the functionalized NPs precipitated and the unbound DNA strands stayed in solution, that was removed after each step with a 1xPBS 10 mM NaCl, 2.11 mM P8709 buffer (Sigma Aldrich). After seven centrifugation steps the particles were kept at high concentration.

3. Sample Preparation for Confocal Measurements

For measurements, the DNA origami constructs were immobilized on functionalized coverslips. The coverslips (24 mm x 60 mm, 170 µm thickness; Carl Roth GmbH) were rinsed with Milli-Q water and cleaned in a UV cleaning system (PSD Pro System, Novascan Technologies) for 30 min at 100 °C. After the cleaning, a micro adhesive SecureSealTM Hybridization Chamber (Grace Bio-Labs) was glued onto the coverslip. The surfaces were incubated first with BSA-biotin (1 mg/mL, Sigma Aldrich) for 10 min and second with neutrAvidin (0.5 mg/mL, Sigma Aldrich). After each incubation step, the surfaces were washed with 1xPBS buffer. The DNA origami structures were immobilized with a concentration of

30 pM in a 1xTAE 12 mM MgCl₂ buffer. After incubation of the DNA origami structures the functionalized Au NPs were attached to the DNA origami structures by incubation in a 1xTAE 750 mM NaCl buffer for 30 min. Then unbound NPs were washed out by a 1xTAE 750 mM NaCl buffer. Later the buffer was replaced by the measurement buffer based on a 1xTAE buffer with X mM MgCl₂/CaCl₂ (X = 12/8, 250, 500, 1000) that also contained trolox/troloxquinone as reducing and oxidizing system (ROXS, 1x TAE, 2 mM trolox/troloxquinone, 1% (w/v) D-(+)-glucose; Sigma Aldrich) as well as glucose/glucose oxidase as oxygen scavenging agent (1 mg/mL glucose oxidase, 0.4% (v/v) catalase (50 μ g/mL), 30% glycerol, 12.5 mM KCl in 50 mM TRIS; Sigma Aldrich) to acquire long fluorescence transients.^{2,3}

4. Sample Preparation for Wide-Field Measurements

For wide-field measurements, LabTekTM chamber slides (Thermo Fisher Scientific Inc.) were incubated with Helmanex overnight and afterwards washed with a 1xPBS buffer. After cleaning, the surface was functionalized using the same protocol for BSA-biotin and neutrAvidin as described above. The DNA origami structures were immobilized by incubating the coverlips with a 30 pM concentration in a 1xTE 12 mM MgCl₂ buffer. For measurements, the buffer was exchanged to a 1xTAE buffer containing different concentrations of imager strands (6 bp, ATTO 655 or 7 bp, Cy3B) for the DNA-PAINT experiments (see *Table S1, S2 and S3*).

c(MgCl ₂) [mM]	c(imager strand) [pM]
12	250
50	1000
100	1000
250	250
500	500
750	500
1000	1000

Table S1: Concentrations of imager strands used at different MgCl₂ concentrations.

Table S2: Concentrations of imager strands used in the two-color experiments at different salt concentrations.

c(MgCl ₂) [mM]	c(red imager strand) [pM]	c(green imager strand) [pM]
12	1000	750
500	3000	1500

Table S3: Concentrations of imager strands used at different MgCl₂ concentrations.

c(MgCl ₂) [mM]	c(imager strand) [pM]
12	250
500	1000

5. Confocal Setup

Confocal measurements were performed on a home-built confocal setup based on an inverted Olympus IX81 microscope. For excitation, a 78 MHz pulsed white light laser (SuperK Extreme, NKT Photonics) was used. The wavelength was set to 639 nm and 532 nm by an AOTF (201608R, Crystal Technology Inc.). To alternate the red and green excitation a second AOTF (AA.AOTF.nsTN, A-Opto-Electronic) was used. The excitation laser passed through a neutral density filter (ndF, OF 0-2, Thorlabs) and was coupled into a polarization maintaining singlemode fiber (PM-Fiber, P1-488PM-FC-2, Thorlabs). After the fiber, the laser was sent through a linear polarizer (LPVISE100-A, Thorlabs) and a lambda quarter waveplate (AQWP05M-600, Thorlabs) to obtain circularly-polarized light. The laser was focused on the sample by an immersion oil objective (UPlanSApo 100x, NA = 1.4, WD = 0.12 mm, Olympus). Scanning of the sample in x and y direction was performed by a piezo stage (P-517.3CL, E-501.00, Physik Instrumente GmbH & Co. KG). Fluorescence light was collected by the same objective and separated from the excitation light by a dichroic mirror (DS, zt532/640rpc, Chroma). The transmitted light was focused onto a 50 µm pinhole (Linos) to filter out scattered laser light. Green and red fluorescence signals were split into two pathways by a dichroic mirror. Each signal was filtered (RazorEdge 647, Semrock Inc. for the red channel; BrightLine HC 582/75, Semrock Inc. for the green channel) and focused by a lens onto the active area of an APD (Avalanche Photo Diode, SPCM, AQR 14, Perkin Elmer). A TSCPC system (Hydra Harp 400, PicoQuant) was used for time-correlated single-photon counting. Data Processing was performed by a custom-written LabVIEW software (National Instruments).

6. Wide-Field Setup

DNA-PAINT measurements were performed on a home-built wide-field microscope based on an inverted Olympus IX71 microscope. As excitation source, a 644 nm diode laser (ibeam smart, Toptica Photonics) was used that was spectrally cleaned-up by a filter (Brightline HC 650/13, Semrock). The laser was focused in the back-focal plane of the objective (UPLXAPO 100X, numerical aperture (NA) = 1.45, working distance (WD) = 0.13, Olympus). The light was directed to the sample situated on top of a nosepiece stage (IX2-NPS, Olympus). The nosepiece stage together with an actively stabilized optical table (TS-300, JRS Scientific Instruments) stabilized the sample for the measurements. Emission light was collected by the same objective as for excitation and directed through a dichroic beamsplitter (Dual Line zt532/ 640 rpc, AHF Analysentechnik) to separate from excitation light. The emission light was filtered (ET 700/75, Chroma) before it was focused onto an EMCCD camera (iXon X3, DU-897, Andor). For data acquisition, the open source imageJ software Micro-Manager was used.⁴

7. Reference and Incubation Studies

Reference measurements of the DNA origami structures without any attached NP were carried out to study whether high salt concentrations of magnesium (Figure S2a) or calcium (Figure S3b) influenced the fluorescence lifetime of the fluorescent dye. The fluorescence lifetime distributions measured for the different reference assemblies all showed the same distributions and therefore no influence of the high salt concentration on the dye alone was seen.

Figure S2: Reference measurements of the fluorescence lifetime of ATTO 647N in DNA origami structures without Au NP at low (12 mM/ 8 mM) and high salt (1000 mM) for MgCl₂ (a) and CaCl₂ (b). Fluorescence lifetime histogram for DNA origami structures with an attached 10 nm Au NP incubated at 1500 mM MgCl₂ (c).

To study whether salt concentrations higher than 1000 mM MgCl_2 had an influence on the fluorescence lifetime distributions and hence the rolling-up of the DNA origami structures an

experiment with a concentration of 1500 mM MgCl_2 was performed. Figure S2c shows no impact of the higher salt concentration.

8. Calcium to Magnesium and vice versa Experiments

A memory effect in DNA was observed in a salt exchange experiment. We immobilized DNA origami structures on a glass surface and attached a nanoparticle in a 1xTAE buffer containing 12 mM MgCl₂. After immobilization, we performed experiments in a 1xTAE buffer containing 8 mM and 1000 mM CaCl₂ (Figure S3a i) and ii)). Contrary to our expectations the observed fluorescence lifetime distributions were not reproducing the MgCl₂ experiments as only a minor quenched population showed up (Figure S3a ii). To ensure the quality of our samples, we changed the buffer to 1000 mM MgCl₂, but a quenched fluorescence lifetime population was not observed (Figure S3a iii)). Even washing with a buffer containing 2 M NaCl (Figure S3a iv)) or overnight incubation in 1 M MgCl₂ (Figure S3a v)) could not show the expected fluorescence lifetime quenching in the histograms.

The ion exchange measurement was also performed in the opposite direction to first prove that the DNA origami structures were able to undergo the structural change observed in the fluorescence lifetime quenching. The measurements with 12 mM and 1000 mM MgCl₂ (Figure S3b i and ii)) reproduced well the effect shown in Figure 2 in the manuscript. After proving the functionality of the DNA origami structures, a recovery of the flat state by a change to 8 mM CaCl₂ was shown (Figure S3b iii)). Now a titration experiment with CaCl₂ was performed to reproduce the histograms obtained with MgCl₂. Therefore, fluorescence intensity transients were taken at 8 and 1000 mM CaCl₂ and converted into fluorescence lifetime transients summed up in fluorescence lifetime histograms in Figure S3b iv) and v). This time a small fraction of DNA origami structures was showing a rolling-up as indicated by the quenched fluorescence lifetime population. Still, the fraction of rolled-up DNA origami structures was lower than in the magnesium experiments.

Figure S3: (a) Fluorescence lifetime distributions of ATTO 647N from scan images for i) 8 mM CaCl₂ and ii) 1000 mM CaCl₂. After the calcium measurements the buffer was exchanged to magnesium with different incubation methods: iii) washing 5 times with 1000 mM MgCl₂, iv) washing 3 times with 2 M NaCl then adding 1000 mM CaCl₂, v) overnight incubation with 1000 mM CaCl₂. (b) Fluorescence lifetime distributions from scan images for i) 8 mM MgCl₂ and ii) 1000 mM MgCl₂. The high magnesium concentration measurement was recovered with 8 mM CaCl₂ (iii). After switching between the rolled up and open state the sample was treated with calcium ions for two measurements, distributions (iv) an (v) show the histograms from fluorescence lifetime transient for 8 mM CaCl₂ and 1000 mM CaCl₂.

These measurements showed that it is crucial to decide which incubation step is done in which buffer and in which order. We assume this effect to be related to ion species binding stably to DNA inducing a kind of memory effect in the DNA. Once an ion is bound tightly, it influences the binding of other ions in the vicinity and can hinder ions of different kind to interact with the DNA the way they would do in the absence of the first bound ion.

Finally, we found that an attachment of the nanoparticle in 1xTAE with 750 mM NaCl and afterwards several washing steps and overnight incubation in 1xTAE with 8 mM CaCl₂ for the calcium titration experiments helped to overcome this kinetic blocking of the conformational changes upon ion exchange.

9. Distance Calculation

We calculated the distances of the red fluorescent dye to the gold nanoparticle's surface in the flat and rolled-up state of the DNA origami structure. For all calculations we used the theorem of Pythagoras. In a relaxed geometry (Figure S4a) the fluorophore was 33 nm away from the NP which is out of the range for energy transfer between the fluorescent dye and the NP. As the DNA origami structure rolls up the dye approached the NP and the fluorescence lifetime gets quenched. We assumed two possible axes of rolling-up of the DNA origami structure. One axis was parallel to the DNA origami helices (black dashed line in Figure S4a) and the other possible axis was a diagonal axis (green dashed line in Figure S4a) on the DNA origami rectangle. The distance between the ATTO 467N and the NP's surface for parallel rolling-up was calculated with a $D_{NP, dye}$ of 12.2 nm. In a diagonal rolling-up geometry the edge with the ATTO 647N bound is not directly approaching the opposing edge, but is shifted. This geometric point we calculated to be 30% of the of the long axis. A diagonal rolling-up leads to a different diameter of the formed DNA origami tube. Based on this assumption, a dye nanoparticle distance of $D_{NP, dye}$ of 8.3 nm was calculated for the diagonal rolling-up.

Figure S4: Schematic of the DNA origami rectangle with dimensions of 71 x 85 nm (a). The two lines are indicating possible directions of bending, which are along the DNA helices (black dashed line) or diagonal (green dashed line). The yellow circle is presenting the gold nanoparticle. (b) Sketches of the front and side view of the rolled-up DNA origami structure along the parallel axis with a DNA tube diameter of $d_{origami}$ of 22.6 nm and a calculated distance between the dye and nanoparticle $D_{NP, dye}$ of 12.2 nm. (c) Sketches of the front and side view of the rolling-up of the DNA origami structure along the diagonal axis with $d_{origami}$ 24.3 nm and $D_{NP, dye}$ of 8.3 nm. In both geometries the diameter of the nanoparticle d_{NP} is 10 nm and the nanoparticle binding distance between particle and DNA origami structure $D_{NP, binding}$ is 4 nm.

If the measured data is compared to earlier work⁵, the fluorescence lifetime at a distance of 8.3 nm is quenched by 62%. For ATTO 647N this quenching would result in a fluorescence lifetime of 1.5 ns. This value is close to the measured fluorescence lifetime of 1.3 ns. The

quenching in rolling-up along the parallel axis of the DNA origami structure in turn would only lead to a quenching of 39% and thus a fluorescence lifetime of 2.9 ns would be expected.

10. Dynamics of a Holliday Junction

To study the influence of different salt concentrations on dynamic structures and on 3D DNA origami structures a Holliday Junction on the surface (HJ_{only}) and in a force clamp⁶ DNA origamis structure (HJ_{FC}) was analyzed. In recent years, Holliday junctions have become a reference to study DNA dynamics by single-molecule FRET and its sensitivity to environmental conditions.^{7,8} The Holliday Junction contains four different oligonucleotides and fluctuates between two stacked conformations. Two out of four oligonucleotides were labeled with dyes (Cy3/Cy5) which can non-radiatively transfer energy via FRET from the donor (Cy3) to the acceptor dye (Cy5). Switching between the two conformations was visualized by FRET changes between a high-FRET (h. FRET) and a low-FRET state (l. FRET; Figure S5a). It is generally known that the kinetics of switching is strongly slowed down with increasing concentration of bivalent ions.⁹ We immobilized HJs via neutrAvidin-biotin interactions on BSA-biotin coated coverslips (Figure S54a). Representative FRET transients are shown in Figure S5b for low (12.5 mM, rose) and high (1000 mM, red) magnesium concentration and directly revealed the reduced rate of the transitions.

Next, we incorporated the HJ into a DNA origami force clamp^{6,10} in which two arms of the HJ were connected to a rigid DNA origami frame (Figure S5c). Depending on the length of the connecting single-stranded DNA regions, an entropic force is exerted on the HJ yielding a preference for one conformational state (here the high-FRET state) over the other. The applied approximately 4 pN yielded an increased fraction of the high-FRET state directly visible in the representative transients of Figure S5d both at low and high Mg²⁺ concentration.

For statistical analysis, we histogrammed all the dwell times measured and calculated the equilibrium constant K (Figure S5e) which is given by:

$$K_{HJ, c(MgCl_2)} = \frac{t_{h. FRET, HJ, c(MgCl_2)}}{t_{l. FRET, HJ, c(MgCl_2)}}$$
(1)

K illustrates that the higher salt concentration shifted the equilibrium to the low-FRET state which was observed for the HJ_{only} and HJ_{FC} samples. Interestingly, K changed by a factor R of roughly 1.5 for both samples with R calculated as

$$R_{HJ, c(MgCl_2)} = \frac{K_{HJ, 12.5 mM MgCl2}}{K_{HJ, FC, 1 M MgCl2}}$$
(2)
(see Figure S5g).

The fact that the kinetics and equilibrium constant changed similarly for the pure HJ and the HJ in the DNA origami force clamp indicated that no significant change in the structure of the force clamp itself occurred which would have an influence on the applied force. Overall, this experiment indicated that Mg²⁺ concentration did not substantially alter the structure and properties of a functional, rigid 3D DNA origami structure and showed that such devices might be functional over a broad range of ion concentration.

Figure S5: Illustration of the HJ only (HJ_{only}) and HJ in the DNA origami force clamp (HJ_{FC}) for observation of the salt influence. HJ only moving between the high- and low-FRET state (a) and in the FC (c). Exemplary transients of (a) are shown in (b) and of (c) in (d) with the salt concentrations of 12.5 mM and 1 M MgCl₂. (e) shows the dwell time t for every species obtained from a correlation analysis. The equilibrium constant between high- and low-FRET state shows a shift in the presence of higher salt concentration. By calculating the ratio R between 12.5 mM and 1 M MgCl₂ no significant difference is observed which is a clear indicator that high salt concentration does not have an impact on a rigid 3D DNA origami structure and dynamics.

Holliday Junction Preparation: Sequences for the Holliday Junction are shown in Table S4.

Oligonucleotide	Sequence (5'->3')
r	CCCACCGCTCGGCTCAACTGGG
X	biotin-TTTCCCAGTTGAGCGCTTGCTAGGG
b	Cy5-CCCTAGCAAGCCGCTGCTACGG
h	Cy3-CCGTAGCAGCGCGAGCGGTGGG

Table S4: Sequences of the HJ_{only}.

For the folding of the HJ an oligonucleotide solution with the ratio of 1:2:2:4 (x:r:b:h) in 1xTAE with 50 mM NaCl is heated to 70 °C and slowly cooled down at a rate of 1 °C/min until room temperature is reached.

DNA origami force clamp preparation: The preparation protocol and the sequences of the 4 pN force clamp were described in ref.⁶. To remove the excess of oligonucleotides gel electrophoreses was used. Therefore, 50 mL of 1.5% agarose gel (Biozym LE Agarose) were prepared in a 1xTAE buffer containing 12.5 mM MgCl₂ (Sigma Aldrich). The DNA origami solution was diluted with 10x BlueJuiceTM Gel loading buffer (Thermo Fischer Scientific) and filled into the gel. The cooled gel ran for 2 h at 60 V, was cut with a scalpel and squeezed with a glass coverslip. The concentration of the DNA origami structure was determined with a Nanodrop 2000 spectralphotometer (Thermo Fischer Scientific).

<u>Measurement procedure</u>: For the measurements, a flow chamber was first incubated with BSAbiotin (1 mg/mL, Sigma Aldrich) for 10 min. After three times washing with a 1xTAE buffer with 12.5 mM MgCl₂ (Sigma Aldrich) the sample was incubated with neutrAvidin (1 mg/mL, Sigma Aldrich) for 10 min and washed again three times with 1xTAE buffer containing 12.5 mM MgCl₂ (Sigma Aldrich). Finally, the diluted DNA sample with a concentration of 25 pM was added. After adding the oxygen scavenging (1 mg/mL glucose oxidase, 0.4% (v/v) catalase (50 μ g/mL), 30% glycerol, 12.5 mM KCl in 50 mM TRIS; Sigma Aldrich) and ROX system with the respective MgCl₂ concentration (1x TAE, 2 mM trolox/troloxquinone, 1% (w/v) D-(+)-glucose; Sigma Aldrich) the sealed sample was measured on a home-built confocal microscope (fluorescence confocal microscope II¹¹).^{2,3} For the measurements, a laser power between 2 and 3 μ W for the green and 1 μ W for the red excitation source were used. For PIE¹² measurements the laser repetition rate was set to 80 MHz. The measured data was evaluated with a home-written Labview software and the dwell times were extracted from the correlation of the FRET channel (green excitation – red detection).

11. DNA Origami ssDNA Dtrands

Table S5: Unmodified ssDNA strands.

Sequence (5'→3')	Number
AAGGCCGCTGATACCGATAGTTGCGACGTTAG	1
TCGAATTCGGGAAACCTGTCGTGCAGCTGATT	2
GATGGTTTGAACGAGTAGTAAATTTACCATTA	3
CGAAAGACTTTGATAAGAGGTCATATTTCGCA	4
TTAACGTCTAACATAAAAACAGGTAACGGA	5
TCTAAAGTTTTGTCGTCTTTCCAGCCGACAA	6
AACAAGAGGGATAAAAATTTTTAGCATAAAGC	7
AGCCAGCAATTGAGGAAGGTTATCATCATTTT	8
GATGGCTTATCAAAAAGATTAAGAGCGTCC	9
GCGGATAACCTATTATTCTGAAACAGACGATT	10
CTGAGCAAAAATTAATTACATTTTGGGTTA	11
TGTAGAAATCAAGATTAGTTGCTCTTACCA	12
CAAATCAAGTTTTTTGGGGTCGAAACGTGGA	13
TAAGAGCAAATGTTTAGACTGGATAGGAAGCC	14
TCCACAGACAGCCCTCATAGTTAGCGTAACGA	15
ACCGATTGTCGGCATTTTCGGTCATAATCA	16
TTTAGGACAAATGCTTTAAACAATCAGGTC	17
AGTATAAAGTTCAGCTAATGCAGATGTCTTTC	18
ACATAACGGGAATCGTCATAAATAAAGCAAAG	19
CAGAAGATTAGATAATACATTTGTCGACAA	20
AAGTAAGCAGACACCACGGAATAATATTGACG	21
GAGAGATAGAGCGTCTTTCCAGAGGTTTTGAA	22
GAATTTATTAATGGTTTGAAATATTCTTACC	23
ACAACATGCCAACGCTCAACAGTCTTCTGA	24
AATACTGCCCAAAAGGAATTACGTGGCTCA	25
GAAACGATAGAAGGCTTATCCGGTCTCATCGAGAACAAGC	26
GCCGTCAAAAACAGAGGTGAGGCCTATTAGT	27
ACCTTTTTATTTAGTTAATTTCATAGGGCTT	28
TCAATATCGAACCTCAAATATCAATTCCGAAA	29
GTGATAAAAAGACGCTGAGAAGAGAGATAACCTT	30
TTTTCACTCAAAGGGCGAAAAACCATCACC	31
GAAATAAAAATCCTTTGCCCGAAAGATTAGA	32
GAGGGTAGGATTCAAAAGGGTGAGACATCCAA	33
GCCCGTATCCGGAATAGGTGTATCAGCCCAAT	34
CAACTGTTGCGCCATTCGCCATTCAAACATCA	35
TTAACACCAGCACTAACAACTAATCGTTATTA	36
GTATAGCAAACAGTTAATGCCCAATCCTCA	37
AATACGTTTGAAAGAGGACAGACTGACCTT	38
TTGACAGGCCACCAGAGCCGCGATTTGTA	39
AATAGTAAACACTATCATAACCCTCATTGTGA	40

Sequence $(5' \rightarrow 3')$	Number
GAAATTATTGCCTTTAGCGTCAGACCGGAACC	41
CTTTTACAAAATCGTCGCTATTAGCGATAG	42
GCTTTCCGATTACGCCAGCTGGCGGCTGTTTC	43
AACAGTTTTGTACCAAAAACATTTTATTTC	44
AAGGAAACATAAAGGTGGCAACATTATCACCG	45
AAGCCTGGTACGAGCCGGAAGCATAGATGATG	46
ACCCTTCTGACCTGAAAGCGTAAGACGCTGAG	47
ACAACTTTCAACAGTTTCAGCGGATGTATCGG	48
CCAGGGTTGCCAGTTTGAGGGGACCCGTGGGA	49
ATCGCAAGTATGTAAATGCTGATGATAGGAAC	50
CATCAAGTAAAACGAACTAACGAGTTGAGA	51
TAAAAGGGACATTCTGGCCAACAAAGCATC	52
AGAGAGAAAAAATGAAAATAGCAAGCAAACT	53
AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCC	54
GACCTGCTCTTTGACCCCCAGCGAGGGAGTTA	55
TACGTTAAAGTAATCTTGACAAGAACCGAACT	56
CCCGATTTAGAGCTTGACGGGGAAAAAGAATA	57
TAAATCAAAATAATTCGCGTCTCGGAAACC	58
ATCCCCCTATACCACATTCAACTAGAAAAATC	59
TAAAACGAGGTCAATCATAAGGGAACCGGATA	60
AGGCTCCAGAGGCTTTGAGGACACGGGTAA	61
TCACCAGTACAAACTACAACGCCTAGTACCAG	62
GCGAAAAATCCCTTATAAATCAAGCCGGCG	63
TTTACCCCAACATGTTTTAAATTTCCATAT	64
ATACATACCGAGGAAACGCAATAAGAAGCGCATTAGACGG	65
GATGTGCTTCAGGAAGATCGCACAATGTGA	66
CAGCGAAACTTGCTTTCGAGGTGTTGCTAA	67
GCCTCCCTCAGAATGGAAAGCGCAGTAACAGT	68
TTCATTACGTCAGGACGTTGGGAAATGCAGAT	69
CATGTAATAGAATATAAAGTACCAAGCCGT	70
TTGCTCCTTTCAAATATCGCGTTTGAGGGGGGT	71
AAATTAAGTTGACCATTAGATACTTTTGCG	72
GCACAGACAATATTTTTGAATGGGGTCAGTA	73
CATTTGAAGGCGAATTATTCATTTTGTTTGG	74
CCACCCTCATTTTCAGGGATAGCAACCGTACT	75
CTTTAATGCGCGAACTGATAGCCCCACCAG	76
ATTATCATTCAATATAATCCTGACAATTAC	77
GCGAGTAAAAATATTTAAATTGTTACAAAG	78
CTGTGTGATTGCGTTGCGCTCACTAGAGTTGC	79
TTAGGATTGGCTGAGACTCCTCAATAACCGAT	80
TCTTCGCTGCACCGCTTCTGGTGCGGCCTTCC	81
ATTATACTAAGAAACCACCAGAAGTCAACAGT	82
ATTTACCGGGAACCAGAGCCACCACTGTAGCGC	83
TGACAACTCGCTGAGGCTTGCATTATACCA	84

Sequence (5'→3')	Number
CAGCAAAAGGAAACGTCACCAATGAGCCGC	85
GACCAACTAATGCCACTACGAAGGGGGGTAGCA	86
GCCCTTCAGAGTCCACTATTAAAGGGTGCCGT	87
GGCCTTGAAGAGCCACCACCCTCAGAAACCAT	88
GTACCGCAATTCTAAGAACGCGAGTATTATTT	89
CTTAGATTTAAGGCGTTAAATAAAGCCTGT	90
TCAAATATAACCTCCGGCTTAGGTAACAATTT	91
GTCGACTTCGGCCAACGCGCGGGGTTTTTC	92
GCCAGTTAGAGGGTAATTGAGCGCTTTAAGAA	93
GTTTATCAATATGCGTTATACAAACCGACCGT	94
TTATTACGAAGAACTGGCATGATTGCGAGAGG	95
TGAAAGGAGCAAATGAAAAATCTAGAGATAGA	96
TGTAGCCATTAAAATTCGCATTAAATGCCGGA	97
CGCGCAGATTACCTTTTTAATGGGAGAGACT	98
AAAGGCCGGAGACAGCTAGCTGATAAATTAATTTTGT	99
AGGAACCCATGTACCGTAACACTTGATATAA	100
GTTTTCAAGGGAGGGAAGGTAAAGTTTATTT	101
AAAGTCACAAAATAAACAGCCAGCGTTTTA	102
AGACGACAAAGAAGTTTTGCCATAATTCGAGCTTCAA	103
AACACCAAATTTCAACTTTAATCGTTTACC	104
TTAAAGCCAGAGCCGCCACCCTCGACAGAA	105
GCCCGAGAGTCCACGCTGGTTTGCAGCTAACT	106
AACGTGGCGAGAAAGGAAGGGAAACCAGTAA	107
GCAATTCACATATTCCTGATTATCAAAGTGTA	108
TTAATGAACTAGAGGATCCCCGGGGGGGTAACG	109
ATCCCAATGAGAATTAACTGAACAGTTACCAG	110
AACGCAAAATCGATGAACGGTACCGGTTGA	111
GCTATCAGAAATGCAATGCCTGAATTAGCA	112
CCAATAGCTCATCGTAGGAATCATGGCATCAA	113
ACCTTGCTTGGTCAGTTGGCAAAGAGCGGA	114
GTTTTAACTTAGTACCGCCACCCAGAGCCA	115
GCCTTAAACCAATCAATAATCGGCACGCGCCT	116
TGCATCTTTCCCAGTCACGACGGCCTGCAG	117
TATTAAGAAGCGGGGTTTTGCTCGTAGCAT	118
ACGCTAACACCCACAAGAATTGAAAATAGC	119
GCGAACCTCCAAGAACGGGTATGACAATAA	120
AAATCACCTTCCAGTAAGCGTCAGTAATAA	121
TTTTATTTAAGCAAATCAGATATTTTTTGT	122
AATGGTCAACAGGCAAGGCAAAGAGTAATGTG	123
AGAAAGGAACAACTAAAGGAATTCAAAAAAA	124
TATAAGCCAACCCGTCGGATTCTGACGACAG	125
GCCATCAAGCTCATTTTTTAACCACAAATCCA	126
CAGGAGGTGGGGTCAGTGCCTTGAGTCTCTGA	127
ACACTCATCCATGTTACTTAGCCGAAAGCTGC	128

Sequence (5'→3')	Number
CTCGTATTAGAAATTGCGTAGATACAGTAC	129
TAAATCATATAACCTGTTTAGCTAACCTTTAA	130
TAATCAGCGGATTGACCGTAATCGTAACCG	131
ACAAACGGAAAAGCCCCCAAAAACACTGGAGCA	132
TCGGCAAATCCTGTTTGATGGTGGACCCTCAA	133
CTTTTGCAGATAAAAACCAAAATAAAGACTCC	134
TCATTCAGATGCGATTTTAAGAACAGGCATAG	135
GTAATAAGTTAGGCAGAGGCATTTATGATATT	136
CATAAATCTTTGAATACCAAGTGTTAGAAC	137
TCATCGCCAACAAAGTACAACGGACGCCAGCA	138
ATATTTTGGCTTTCATCAACATTATCCAGCCA	139
CCTAAATCAAAATCATAGGTCTAAACAGTA	140
TCACCGACGCACCGTAATCAGTAGCAGAACCG	141
CGATAGCATTGAGCCATTTGGGAACGTAGAAA	142
ATTTTAAAATCAAAATTATTTGCACGGATTCG	143
TATATTTGTCATTGCCTGAGAGTGGAAGATTG	144
TCAAGTTTCATTAAAGGTGAATATAAAAGA	145
CTGTAGCTTGACTATTATAGTCAGTTCATTGA	146
CAACCGTTTCAAATCACCATCAATTCGAGCCA	147
TTAGTATCACAATAGATAAGTCCACGAGCA	148
CTACCATAGTTTGAGTAACATTTAAAATAT	149
CTCCAACGCAGTGAGACGGGCAACCAGCTGCA	150
CTTATCATTCCCGACTTGCGGGGAGCCTAATTT	151
GCTTCTGTTCGGGAGAAACAATAACGTAAAACA	152
GCAAGGCCTCACCAGTAGCACCATGGGCTTGA	153
CGGATTGCAGAGCTTAATTGCTGAAACGAGTA	154
CACATTAAAATTGTTATCCGCTCATGCGGGCC	155
ATTACCTTTGAATAAGGCTTGCCCAAATCCGC	156
GCGGAACATCTGAATAATGGAAGGTACAAAAT	157
TAAATGAATTTTCTGTATGGGATTAATTTCTT	158
CACAACAGGTGCCTAATGAGTGCCCAGCAG	159
AAACAGCTTTTTGCGGGATCGTCAACACTAAA	160
GACAAAAGGTAAAGTAATCGCCATATTTAACAAAACTTTT	161
TAGGTAAACTATTTTTGAGAGATCAAACGTTA	162
GCGCAGACAAGAGGCAAAAGAATCCCTCAG	163
TTCCAGTCGTAATCATGGTCATAAAAGGGG	164
TAAATCGGGATTCCCAATTCTGCGATATAATG	165
CACCAGAAAGGTTGAGGCAGGTCATGAAAG	166
AAAGCACTAAATCGGAACCCTAATCCAGTT	167
AATTGAGAATTCTGTCCAGACGACTAAACCAA	168
ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT	169
CTTTAGGGCCTGCAACAGTGCCAATACGTG	170
TAGAGAGTTATTTTCATTTGGGGGATAGTAGTAGCATTA	171
TGTCACAATCTTACCGAAGCCCTTTAATATCA	172

Sequence (5'→3')	Number
CCAACAGGAGCGAACCAGACCGGAGCCTTTAC	173
AATAGCTATCAATAGAAAATTCAACATTCA	174
TGGAACAACCGCCTGGCCCTGAGGCCCGCT	175
TTATACCACCAAATCAACGTAACGAACGAG	176
ATATTCGGAACCATCGCCCACGCAGAGAAGGA	177
TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCG	178
TATAACTAACAAAGAACGCGAGAACGCCAA	179
ATACCCAACAGTATGTTAGCAAATTAGAGC	180
TATCGGCCGCAAGGCGATTAAGTTTACCGAGC	181
GATTTAGTCAATAAAGCCTCAGAGAACCCTCA	182
TTTATCAGGACAGCATCGGAACGACACCAACC	183
CCACCCTCTATTCACAAACAAATACCTGCCTA	184
AACGCAAAGATAGCCGAACAAACCCTGAAC	185
AGCGCGATGATAAATTGTGTCGTGACGAGA	186
CCTGATTGCAATATGTGAGTGATCAATAGT	187
TTCTACTACGCGAGCTGAAAAGGTTACCGCGC	188
AGGCAAAGGGAAGGGCGATCGGCAATTCCA	189
AGAAAACAAAGAAGATGATGAAAACAGGCTGCG	190

Table S6: Modified ssDNA strands.

Sequence (5'→3')	Number
biotin - GAAACGATAGAAGGCTTATCCGGTCTCATCGAGAACAAGC	26
biotin - TAGAGAGTTATTTTCATTTGGGGGATAGTAGTAGCATTA	171

11.1 Energy Transfer Assembly

Table S7: Replaced ssDNA strands for confocal measurements.

Sequence (5'→3')	Number
ACGGCTACAAAAGGAGCCTTTAATGTGAGAAT - ATTO 647N	169
GATGGCTTATCAAAAA - ATTO 532 - GATTAAGAGCGTCC	9
AAATTAAGTTGACCATTAGATACTTTTGCGAAAAAAAAAA	72
AAAAA	
GCTATCAGAAATGCAATGCCTGAATTAGCAAAAAAAAAA	112
AAAAA	
AATGGTCAACAGGCAAGGCAAAGAGTAATGTGAAAAAAAA	123
AAAAAA	
ATACATACCGAGGAAACGCAATAAGAAGCGCATTAGACGGCCAAATAA	65
AGACGACAAAGAAGTTTTGCCATAATTCGAGCTTCAATCAGGAT	103
Oligonucleotide sequence on nanoparticles $(5' \rightarrow 3')$:	

11.2 One Color DNA-PAINT Sample

Sequence $(5' \rightarrow 3')$	Number
AAGGCCGCTGATACCGATAGTTGCGACGTTAGTTAAATGCCCG	1
TCTAAAGTTTTGTCGTCTTTCCAGCCGACAATTAAATGCCCG	6
AGCCAGCAATTGAGGAAGGTTATCATCATTTTTTAAATGCCCG	8
GCGGATAACCTATTATTCTGAAACAGACGATTTTAAATGCCCG	10
CAAATCAAGTTTTTTGGGGTCGAAACGTGGATTAAATGCCCG	13
TCCACAGACAGCCCTCATAGTTAGCGTAACGATTAAATGCCCG	15
CAGAAGATTAGATAATACATTTGTCGACAATTAAATGCCCG	20
GCCGTCAAAAAACAGAGGTGAGGCCTATTAGTTTAAATGCCCG	27
TCAATATCGAACCTCAAATATCAATTCCGAAATTAAATGCCCG	29
TTTTCACTCAAAGGGCGAAAAACCATCACCTTAAATGCCCG	31
GCCCGTATCCGGAATAGGTGTATCAGCCCAATTTAAATGCCCG	34
TTAACACCAGCACTAACAACTAATCGTTATTATTAAATGCCCG	36
GTATAGCAAACAGTTAATGCCCAATCCTCATTAAATGCCCG	37
ACCCTTCTGACCTGAAAGCGTAAGACGCTGAGTTAAATGCCCG	47
ACAACTTTCAACAGTTTCAGCGGATGTATCGGTTAAATGCCCG	48
TAAAAGGGACATTCTGGCCAACAAAGCATCTTAAATGCCCG	52
AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCCTTAAATGCCCG	54
GACCTGCTCTTTGACCCCCAGCGAGGGAGTTATTAAATGCCCG	55
CCCGATTTAGAGCTTGACGGGGAAAAAGAATATTAAATGCCCG	57
AGGCTCCAGAGGCTTTGAGGACACGGGTAATTAAATGCCCG	61
TCACCAGTACAAACTACAACGCCTAGTACCAGTTAAATGCCCG	62
GCGAAAAATCCCTTATAAATCAAGCCGGCGTTAAATGCCCG	63
CAGCGAAACTTGCTTTCGAGGTGTTGCTAATTAAATGCCCG	67
GCCTCCCTCAGAATGGAAAGCGCAGTAACAGTTTAAATGCCCG	68
GCACAGACAATATTTTTGAATGGGGTCAGTATTAAATGCCCG	73
CCACCCTCATTTTCAGGGATAGCAACCGTACTTTAAATGCCCG	75
CTTTAATGCGCGAACTGATAGCCCCACCAGTTAAATGCCCG	76
TTAGGATTGGCTGAGACTCCTCAATAACCGATTTAAATGCCCG	80
TGACAACTCGCTGAGGCTTGCATTATACCATTAAATGCCCG	84
GACCAACTAATGCCACTACGAAGGGGGGTAGCATTAAATGCCCG	86
GCCCTTCAGAGTCCACTATTAAAGGGTGCCGTTTAAATGCCCG	87
TGAAAGGAGCAAATGAAAAATCTAGAGATAGATTAAATGCCCG	96
AGGAACCCATGTACCGTAACACTTGATATAATTAAATGCCCG	100
GCCCGAGAGTCCACGCTGGTTTGCAGCTAACTTTAAATGCCCG	106
AACGTGGCGAGAAAGGAAGGGAAACCAGTAATTAAATGCCCG	107
ACCTTGCTTGGTCAGTTGGCAAAGAGCGGATTAAATGCCCG	114
GTTTTAACTTAGTACCGCCACCCAGAGCCATTAAATGCCCG	115
TATTAAGAAGCGGGGTTTTGCTCGTAGCATTTAAATGCCCG	118
AAATCACCTTCCAGTAAGCGTCAGTAATAATTAAATGCCCG	121
AGAAAGGAACAACTAAAGGAATTCAAAAAAATTAAATGCCCG	124

Table S8: Replaced ssDNA strands for one color DNA-PAINT measurements.

Sequence (5'→3')	Number
CAGGAGGTGGGGTCAGTGCCTTGAGTCTCTGAATTTACCGTTAAATG	127
CCCG	
TCGGCAAATCCTGTTTGATGGTGGACCCTCAATTAAATGCCCG	133
TCATCGCCAACAAAGTACAACGGACGCCAGCATTAAATGCCCG	138
CTCCAACGCAGTGAGACGGGGCAACCAGCTGCATTAAATGCCCG	150
TAAATGAATTTTCTGTATGGGATTAATTTCTTTTAAATGCCCG	158
AAACAGCTTTTTGCGGGATCGTCAACACTAAATTAAATGCCCG	160
GCGCAGACAAGAGGCAAAAGAATCCCTCAGTTAAATGCCCG	163
CACCAGAAAGGTTGAGGCAGGTCATGAAAGTTAAATGCCCG	166
AAAGCACTAAATCGGAACCCTAATCCAGTTTTAAATGCCCG	167
ACGGCTACAAAAGGAGCCTTTAATGTGAGAATTTAAATGCCCG	169
CTTTAGGGCCTGCAACAGTGCCAATACGTGTTAAATGCCCG	170
TGGAACAACCGCCTGGCCCTGAGGCCCGCTTTAAATGCCCG	175
ATATTCGGAACCATCGCCCACGCAGAGAAGGATTAAATGCCCG	177
TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCGTTAAATGCCCG	178
TTTATCAGGACAGCATCGGAACGACACCAACCTAAAACGATTAAATG	183
CCCG	
CCACCCTCTATTCACAAACAAATACCTGCCTATTAAATGCCCG	184
Imager strand $(5' \rightarrow 3')$: CGGGCA-ATTO 655	

11.3 Two Color DNA-PAINT Sample

Table S9: Replaced ssDNA strands for two color DNA-PAINT measurements.

Sequence (5'→3')	Number
AAGGCCGCTGATACCGATAGTTGCGACGTTAGTTAAATGCCCG	1
TCTAAAGTTTTGTCGTCTTTCCAGCCGACAATTAAATGCCCG	6
TCCACAGACAGCCCTCATAGTTAGCGTAACGATTAAATGCCCG	15
GCCCGTATCCGGAATAGGTGTATCAGCCCAATTTAAATGCCCG	34
ACAACTTTCAACAGTTTCAGCGGATGTATCGGTTAAATGCCCG	48
GACCTGCTCTTTGACCCCCAGCGAGGGAGTTATTAAATGCCCG	55
TCACCAGTACAAACTACAACGCCTAGTACCAGTTAAATGCCCG	62
CAGCGAAACTTGCTTTCGAGGTGTTGCTAATTAAATGCCCG	67
GCCTCCCTCAGAATGGAAAGCGCAGTAACAGTTTAAATGCCCG	68
CCACCCTCATTTTCAGGGATAGCAACCGTACTTTAAATGCCCG	75
TTAGGATTGGCTGAGACTCCTCAATAACCGATTTAAATGCCCG	80
GACCAACTAATGCCACTACGAAGGGGGGTAGCATTAAATGCCCG	86
AGGAACCCATGTACCGTAACACTTGATATAATTAAATGCCCG	100
GTTTTAACTTAGTACCGCCACCCAGAGCCATTAAATGCCCG	115
TATTAAGAAGCGGGGTTTTGCTCGTAGCATTTAAATGCCCG	118
AAATCACCTTCCAGTAAGCGTCAGTAATAATTAAATGCCCG	121
AGAAAGGAACAACTAAAGGAATTCAAAAAAATTAAATGCCCG	124

Sequence (5'→3')	Number
TAAATGAATTTTCTGTATGGGATTAATTTCTTTTAAATGCCCG	158
GCGCAGACAAGAGGCAAAAGAATCCCTCAGTTAAATGCCCG	163
CACCAGAAAGGTTGAGGCAGGTCATGAAAGTTAAATGCCCG	166
ACGGCTACAAAAGGAGCCTTTAATGTGAGAATTTAAATGCCCG	169
ATATTCGGAACCATCGCCCACGCAGAGAAGGATTAAATGCCCG	177
TTTCGGAAGTGCCGTCGAGAGGGTGAGTTTCGTTAAATGCCCG	178
CCACCCTCTATTCACAAACAAATACCTGCCTATTAAATGCCCG	184
TCGAATTCGGGAAACCTGTCGTGCAGCTGATTTTTCCTCCTCCT	2
CAAATCAAGTTTTTTGGGGGTCGAAACGTGGATTTCCTCCTCCT	13
GCCGTCAAAAAACAGAGGTGAGGCCTATTAGTTTTCCTCCTCCT	27
TCAATATCGAACCTCAAATATCAATTCCGAAATTTCCTCCTCCT	29
TTTTCACTCAAAGGGCGAAAAACCATCACCTTTCCTCCTCCT	31
GAAATAAAAATCCTTTGCCCGAAAGATTAGATTTCCTCCTCCT	32
ACCCTTCTGACCTGAAAGCGTAAGACGCTGAGTTTCCTCCTCCT	47
TAAAAGGGACATTCTGGCCAACAAAGCATCTTTCCTCCTCCT	52
AGCAAGCGTAGGGTTGAGTGTTGTAGGGAGCCTTTCCTCCTCCT	54
CCCGATTTAGAGCTTGACGGGGGAAAAAGAATATTTCCTCCTCCT	57
GCGAAAAATCCCTTATAAATCAAGCCGGCGTTTCCTCCTCCT	63
GCACAGACAATATTTTTGAATGGGGTCAGTATTTCCTCCTCCT	73
CTTTAATGCGCGAACTGATAGCCCCACCAGTTTCCTCCTCCT	76
CTGTGTGATTGCGTTGCGCTCACTAGAGTTGCTTTCCTCCTCCT	79
ATTATACTAAGAAACCACCAGAAGTCAACAGTTTTCCTCCTCCT	82
GCCCTTCAGAGTCCACTATTAAAGGGTGCCGTTTTCCTCCTCCT	87
GTCGACTTCGGCCAACGCGCGGGGGTTTTTCTTTCCTCCTCCT	92
TGAAAGGAGCAAATGAAAAATCTAGAGATAGATTTCCTCCTCCT	96
AACGTGGCGAGAAAGGAAGGGAAACCAGTAATTTCCTCCTCCT	107
TCGGCAAATCCTGTTTGATGGTGGACCCTCAATTTCCTCCTCCT	133
CTACCATAGTTTGAGTAACATTTAAAATATTTTCCTCCTCCT	149
CACAACAGGTGCCTAATGAGTGCCCAGCAGTTTCCTCCTCCT	159
AAAGCACTAAATCGGAACCCTAATCCAGTTTTTCCTCCTCCT	167
CTTTAGGGCCTGCAACAGTGCCAATACGTGTTTCCTCCTCCT	170
Imager Strands $(5' \rightarrow 3')$:	

CGGGCA-ATTO 655

AGGAGGA-Cy3B

11.4 NRO 6 nm Grid Sample

All strands (except 26 and 171) are extended with the aptamer sequence (TTAAATGCCCG).

Imager Strand $(5' \rightarrow 3')$: CGGGCA-ATTO 655

12. References

- S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church and W. M. Shih, Rapid prototyping of 3D DNA-origami shapes with caDNAno, *Nucleic acids research*, 2009, **37**, 5001–5006.
- 2 T. Cordes, J. Vogelsang and P. Tinnefeld, On the mechanism of Trolox as antiblinking and antibleaching reagent, *Journal of the American Chemical Society*, 2009, **131**, 5018–5019.
- 3 J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer and P. Tinnefeld, A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes, *Angewandte Chemie (International ed. in English)*, 2008, 47, 5465–5469.
- 4 A. Edelstein, N. Amodaj, K. Hoover, R. Vale and N. Stuurman, Computer control of microscopes using μManager, *Current protocols in molecular biology*, 2010, Chapter 14, Unit14.20.
- 5 G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel and P. Tinnefeld, Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami, *ACS nano*, 2012, 6, 3189–3195.
- 6 P. C. Nickels, B. Wünsch, P. Holzmeister, W. Bae, L. M. Kneer, D. Grohmann, P. Tinnefeld and T. Liedl, Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp, *Science (New York, N.Y.)*, 2016, **354**, 305–307.
- S. A. McKinney, A.-C. Déclais, D. M. J. Lilley and T. Ha, Structural dynamics of individual Holliday junctions, *Nat Struct Biol*, 2003, 10, 93–97.
- 8 C. Hyeon, J. Lee, J. Yoon, S. Hohng and D. Thirumalai, Hidden complexity in the isomerization dynamics of Holliday junctions, *Nature Chem*, 2012, **4**, 907–914.
- 9 A. Gietl, P. Holzmeister, D. Grohmann and P. Tinnefeld, DNA origami as biocompatible surface to match single-molecule and ensemble experiments, *Nucleic acids research*, 2012, 40, e110.
- 10 K. Kramm, T. Schröder, J. Gouge, A. M. Vera, K. Gupta, F. B. Heiss, T. Liedl, C. Engel, I. Berger, A. Vannini, P. Tinnefeld and D. Grohmann, DNA origami-based single-molecule force spectroscopy elucidates RNA Polymerase III pre-initiation complex stability, *Nat Commun*, 2020, **11**, 2828.
- 11 I. Kamińska, J. Bohlen, R. Yaadav, P. Schüler, M. Raab, T. Schröder, J. Zähringer, K. Zielonka, S. Krause and P. Tinnefeld, Graphene Energy Transfer for Single-Molecule Biophysics, Biosensing, and Super-Resolution Microscopy, *Advanced materials (Deerfield Beach, Fla.)*, 2021, e2101099.

12 B. K. Müller, E. Zaychikov, C. Bräuchle and D. C. Lamb, Pulsed interleaved excitation, *Biophysical journal*, 2005, **89**, 3508–3522.