Supporting Information

Bacterial Cellulose-Derived Micro/mesoporous Carbon Anode Materials

Controlled by Poly (methyl methacrylate) for Fast Sodium Ion Transport

Fujuan Wang ^a, Xiaohong Shi ^a, Junlei Zhang ^{b,c}, Tianqi He ^{b,c}, Liang Yang ^a, Tianyun

- Zhang a,b,*, Fen Ran b,c,*
- ^a School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- ^b State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
- ^c School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- * Corresponding authors: Dr. Tianyun Zhang (E-mail: zhangtianyunt@163.com or zhangtianyun@lut.edu.cn); and Prof. Fen Ran (E-mail: ranfen@163.com or ranfen@lut.edu.cn)

Figure S1 TGA curves of the BP_5 and pure BC.

Figure S2 SEM images for a) c-BC-1050 and b) c-BP₅-1050.

*Figure S3 TEM images for a) c-BP*₅*-850, b) c-BP*₅*-1050, and c) c-BP*₅*-1250.*

*Figure S4 a) XRD patterns for c-BC-1050, c-BP*₂*-1050, c-BP*₅*-1050, and c-BP*₈*-1050; b) XRD patterns for c-BP*₅*-850, c-BP*₅*-1050, and c-BP*₅*-1250.*

Figure S5 Raman patterns with fitted curves for a) c-BC-1050, b) c-BP₂-1050, c) c-BP₅-1050, and

*d) c-BP*₈-1050.

Figure S6 The electrochemical performance of different carbon anodes: a) and b) for the CV

curves at 0.1 mV s⁻¹; c) and d) for the rate performance; e) and f) for the cycle performance at 0.1

 $A g^{-l}$.

Figure S7 The electrochemical performance of c-BP₅-1050 and c-BC-1050 with areal loading of 1.3-1.5 mg cm⁻²: a) rate performance; b)cycle stability at 0.1 A g⁻¹, and c) 1 A g⁻¹; d) the cycle performance of c-BP₅-1050 with areal loading of 0.8 mg cm⁻² at 0.5 A g⁻¹ and 1 A g⁻¹ for 300 cycles.

Figure S8 a) CV curves at scan rates from 0.1 to 1.0 mV s⁻¹ for c-BC-1050 carbon anode; b) CV curves of c-BC-1050 carbon anode at a scan rate of 0.1 mV s⁻¹; c) the capacitive contribution of c-BC-1050 at 0.3 mV s⁻¹; d) the capacity ratio of capacitive- and diffusion-controlled charge versus from 0.1 to 1 mV s⁻¹ for c-BC-1050; and e) cathodic and f) anodic of the relationship between peak current and scan rate.

Figure S9 GITT measurements. The potential profiles of a) c-BP₂-1050 and c) c-BP₈-1050 anodes at the discharging/charging states (inset images are the relationship of current and time); the calculating sodium-ion diffusion coefficient for b) c-BP₂-1050 and d) c-BP₈-1050 anodes at the discharging/charging states.

Sample	Peak position(°)		$d_{aaa}(nm)$	L _a (nm)	I_D/I_C
	(002)	(100)	-		-2-0
c-BC-1050	25.634	42.694	0.347	0.136	1.264
c-BP ₂ -1050	23.558	42.749	0.377	2.000	1.784
c-BP ₈ -1050	26.788	42.567	0.332	0.708	2.389
c-BP ₅ -1050	22.964	43.113	0.387	0.622	2.069
c-BP ₅ -850	26.967	43.192	0.330	1.985	-
c-BP ₅ -1250	25.899	42.749	0.344	0.515	-

Table S1 Parameters of different carbon materials.

Peak positions of (002) and (100), the average interlayer spacing d₀₀₂, the average thickness (L_c), and the number (N) of the stacked graphene sheets in resulting carbons from XRD patterns. The d₀₀₂ could be conducted according to Bragg's equation: d_{002} (nm) = $\lambda/2\sin\theta$, where 2 θ is the diffraction angle, λ is the wavelength of the incident X-ray excitation beam (λ =0.154 nm). The L_c of the order-layered segments is estimated by the Debye-Scherrer equation. L_c =0.89 $\lambda/\beta_{002}cos\theta_{002}$, in which θ_{002} and β_{002} represent the (002) peak position and peak width at its half height, respectively. The number N is calculated by L_c/d_{002} .

Sample	S_{BET} (m ² g ⁻	I_D/I_G	Areal Load (mg cm ⁻²)	Rate performance		Deference
	1)			Current density (mA g ⁻¹)	Capacity (mAh g ⁻¹)	- Kelerence
Natural cotton	38	-	2.5-3.5	150	275	[1]
				300	180	
Bleached pulp	377	1.05	1-1.2	2000	85	[2]
TEMPO- bleached	126	-	2.5	100	106	[3]
pulp				100	190	
cellulose nanocrystals	145.56	1.07	2	20	375	[4]
films				200	220	
Bacterial cellulose	120	1.90	0.5	200	271	[5]
films	128			200	205	
Hard carbon	-	-	1.5	50	310	[6]
				5000	145	
Magnolia grandiflora	95.7	1.09	-	500	185.4	[7]
Lima leaves				2000	126.8	
Cellulose	117	1.49	2.5	200	200	[8]
c-BC-1050	58.40	1.26	0.8	30	396.6	
				2000	46.8	This
			1.3-1.5	30	200.4	work
				2000	37.9	
c-BP ₅ -1050	141.03	2.07	0.8	30	380.7	
				2000	64.1	This
			1.3-1.5	30	225.6	work
				2000	75.4	

Table S2 The physical parameters and electrochemical performance comparison of

various carbon anodes recently reported using cellulose as precursors for SIB.

References

- Li Y, Hu Y-S, Titirici M-M, et al. Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659.
- [2] Luo W, Schardt J, Bommier C, et al. Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion Batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662-10666.
- [3] Shen F, Zhu H, Luo W, et al. Chemically Crushed Wood Cellulose Fiber Towards High-Performance Sodium-Ion Batteries[J]. ACS Appl Mater Interfaces, 2015, 7(41): 23291-23296.
- [4] Zhu H, Shen F, Luo W, et al. Low Temperature Carbonization of Cellulose Nanocrystals for High Performance Carbon Anode of Sodium-Ion Batteries[J]. Nano Energy, 2017, 33: 37-44.
- [5] Yang H, Xu R, and Yu Y. A Facile Strategy toward Sodium-Ion Batteries with Ultra-Long Cycle Life and High Initial Coulombic Efficiency: Free-Standing Porous Carbon Nanofiber Film Derived from Bacterial Cellulose[J]. Energy Storage Materials, 2019, 22: 105-112.
- [6] Xia J L, Yan D, Guo L P, et al. Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium-Ion Storage[J]. Advanced Materials, 2020, 32(21): 2000447.
- [7] Zhu Z, Zhong W, Zhang Y, et al. Elucidating Electrochemical Intercalation Mechanisms of Biomass-Derived Hard Carbon in Sodium-/Potassium-Ion Batteries[J]. Carbon Energy, 2021: 1-13.
- [8] Qiu S, Xiao L, Sushko M L, et al. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403.