Supporting Information

One-pot synthesis of novel ligand-free Tin(II)based hybrid metal halide perovskite quantum dots with high anti-water stability for solution-processed UVC photodetectors

Zhenheng Zhang¹, Shengyi Yang^{1,2*}, Jinming Hu³, Hui Peng¹, Hailong Li¹, Peiyun Tang¹, Yurong Jiang⁴, Libin Tang², Bingsuo Zou⁵

¹Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics,

Beijing Institute of Technology, Beijing 100081, P. R. China

²Kunming Institute of Physics, Kunming 650223, P. R. China

³Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer

Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China

⁴School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, P. R. China

⁵School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China

KEYWORDS: Sn-based hybrid metal halide perovskites, ligand-free quantum dots, UVC photodetectors, anti-water stability

Figure S1. (a) XPS of the TBASnCl₃ QDs film; (b) The structure diagram of the TBASnCl₃ QDs.

Figure S2. Schematic diagrams of the processing procedure for lateral photodetectors $Au/TBASnCl_3/Au$.

Figure S3. (a) EDS and (b) analysis of the TBASnCl₃ QDs film.

Figure S4. (a) PL spectra and (b) XRD patterns of TBASnCl₃ QDs film after depositing in the ambient atmosphere with an air humidity of 60 % just after its fabricating and after one week, respectively.

Figure S5 Experimental and calculated powder X-ray diffraction patterns of the as-prepared TBASnCl₃ powder and TBASnCl₃ thin films on glass surface.

Figure S6 (a) XRD patterns of the TBASnCl₃ powder; (b) XRD patterns of TBASnCl₃ QDs film after annealing at 70 $^{\circ}$ C. The inset shows the XRD patterns of TBASnCl₃ QDs film after its magnification.

Figure S7. XRD patterns of the TBASnCl₃ QDs film after annealing at different temperature. (a) 70 °C; (b) 80 °C and (c) 100 °C. (d) XRD patterns of the TBASnCl₃ QDs film after different annealing times at 70 °C.

Figure S8. UPS spectra of the $TBASnCl_3$ film. (a) The secondary edge region and (b) the HOMO region of the $TBASnCl_3$ QDs film.