Supporting Information

Insight on the Sodium Storage Mechanism of Bi2Te3 Nanosheets as a Superior Anode for

Sodium-ion Batteries

Simeng Pang^a, Zhuang Hu^a, Changling Fan^{a,c,d,*}, Weihua Zhang^{a,c}, Yan Cai^b, Shaochang Han^a,

Jinshui Liu^{a,c,*}, Jilei Liu^{a,c,d,*}

^a College of Materials Science and Engineering, Hunan University, Changsha, 410082, China

- ^b College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410018, China
- ^c Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, China
- ^d Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, China
- *Corresponding author at: College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.

Tel.: +86 731 88822967; fax: +86 731 88822967.

E-mail address: fancl@hnu.edu.cn (Dr. C.L. Fan), jsliu@hnu.edu.cn (Prof. J.S. Liu), liujilei@hnu.edu.cn (Prof. J.L. Liu).

Fig.S1 SEM image of the bulk Bi₂Te₃ and the corresponding EDS maps for Bi and Te.

Fig.S2 High-resolution XPS spectrum for the Te 3d in BT-N.

Fig.S3 (a) Galvanostatic charge-discharge profiles of BT-B at current density of 0.1 A g⁻¹, (b) galvanostatic charge-discharge profiles of BT-B at different current densities.

Fig.S4 Partial magnification of the GITT curves of (a) BT-N and (b) BT-B.

Fig.S5 (a) Galvanostatic charge-discharge curves of $Na_3V_2(PO_4)_3$ cathode at current density of 0.1 A g⁻¹, (b) cyclic performance of $Na_3V_2(PO_4)_3$ cathode at current density of 0.1 A g⁻¹.

Table S1. Summary on synthesis methods an	d electrochemical performance of the bismuth-
---	---

Materials	Synthetic method	Cycle capacity [mAh g ⁻¹] (cycles, I)	Rate capacity [mAh g^{-1}] C ₁₁ , C ₁₂ , C ₁₃ (I ₁ -I ₂ -I ₃ , A g^{-1})	Ref.
Bi ₂ Te ₃	Solution	364 (1200, 5 A g ⁻¹)	435.9, 411.7, 339.4 (0.1-0.5-10)	this work
Bi ₂ Te ₃ @PPy	Solvothermal	165.3 (1000, 5 A g ⁻¹)	305, 223.2, 128.3 (0.1-0.5-10)	[1]
Bi ₂ Te ₃ @PPy	Hydrothermal	406 (100, 0.1 A g ⁻¹)	415, 337.6, 231.6 (0.1-0.5-5)	[2]
Bi ₂ S ₃ /Graphene	Hydrothermal	348 (120, 1 A g ⁻¹)	520, 420, 336 (0.1-0.5-2)	[3]
Bi_2S_3/MoS_2	Solvothermal	323.4 (1200, 10 A g ⁻¹)	427.9, 370.8, 330.4 (0.2-0.5-5)	[4]
Bi ₂ Se ₃ /graphene	Ice-bath	323.4 (1200, 10 A g ⁻¹)	229, 212, 181 (1-5-10)	[5]
Bismuthene	Electrochemica	200 (2500-20 A σ ⁻¹)	423 356 227 (2 5-5-15)	[6]
nanosheets	l exfoliation	200 (2000, 2011g)	125, 556, 227 (2.5 5 15)	[0]

based as anode material for SIBs.

References

(1) X. Liu, Y. Si, K. Li, Y. Xu, Z. Zhao, C. Li, Y. Fu and D. Li, Exploring sodium storage mechanism of topological insulator Bi₂Te₃ nanosheets encapsulated in conductive polymer. Energy Stor. Mater. 2021, 41, 255–263.

(2) J. Cui, H. Zheng, Z. Zhang, S. Hwang, X.-Q. Yang and K. He, Origin of anomalous high-rate Na-ion electrochemistry in layered bismuth telluride anodes. *Matter* 2021, 4, 1335–1351.
(3) Y. Zhang, L. Fan, P. Wang, Y. Yin, X. Zhang, N. Zhang, K. Sun, Coupled flower-like Bi₂S₃ and graphene aerogels for superior sodium storage performance. *Nanoscale* 2017, 9, 17694–17698.

(4) L. Cao, X. Liang, X. Ou, X. Yang, Y. Li, C. Yang, Z. Lin and M. Liu, Heterointerface Engineering of Hierarchical Bi₂S₃/MoS₂ with Self-Generated Rich Phase Boundaries for Superior Sodium Storage Performance. *Adv. Funct. Mater.* 2020, **30**, 1910732.

(5) D. Li, J. Zhou, X. Chen and H. Song, Graphene-Loaded Bi₂Se₃: A Conversion–Alloyingtype Anode Material for Ultrafast Gravimetric and Volumetric Na Storage. *ACS Appl. Mater. Interfaces* 2018, **10**, 30379–30387.

(6) M. Bo, J. Li, C. Yao, Z. Huang, L. Li, C. Q. Sun, C. Peng, Electronic structure of twodimensional In and Bi metal on BN nanosheets. *RSC Adv.* 2019, **9**, 9342–9347.