In-situ generated 3D porous nanostructure onto 2D nanosheets to

boost oxygen evolution reaction for water-splitting

Wenli Yu¹, Zhi Chen², Ying Zhao², Yuxiao Gao², Weiping Xiao³, Bin Dong^{1, *}, Zexing Wu^{2, *}, Lei Wang^{2, *}

¹ State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, China

² Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

³ College of Science, Nanjing Forestry University, Nanjing, 210037, PR China

Figure S1. SEM image of iron foam with different magnification.

Figure S2 SEM image of FeCoNi-NS with different magnification.

Figure S3. SEM image of FeCoNi-NS.

Figure S4. SEM image of FeCoNi-NS-ACVs with different magnification.

Figure S5 SEM images of FeNi-NS-ACVs (a, b) and FeCo-NS-ACVs (c, d).

Figure S6. XRD partten of the designed FeCoNi-NS-ACVs.

Figure S7. SEM image of FeCoNi-S with different magnification.

Figure S8 N_2 sorption isotherms and pore size distribution curves of FeCoNi-NS (a) and FeCoNi-NS-ACVs (b).

Figure S9. XPS survey spectrum (a) high-resolution of C 1s (b) and O 1s (c) of the designed FeCoNi-NS-ACVs.

Figure S10. High-resolution Fe 2p XPS spectra of FeCo-NS-ACVs, FeNi-NS-ACVs and FeCoNi-NS-ACVs.

Figure S11. Contact angle measurement of IF.

Figure S12. Tafel slopes of obtained catalysts in 1M KOH.

Figure S13 Linear fitting of scan rates with capacitive current densities at 0.25 V (vs SCE) under different scan rate (inset is CV curves of FeCoNi-NS-ACVs under different scan rates).

Figure S14 SEM images of FeCoNi-NS-ACVs after stability test of OER with different magnifications.

Figure S15 XPS survey spectrum (a) and high-resolution of C 1s (b) of the designed FeCoNi-NS-ACVs after long-time stability test.

Figure S16 Electrochemical measurements: (a) OER polarization curves, (b) Nyquist plots, (c) Tafel slopes of obtained catalysts in 1M KOH.

Figure S17 Electrochemical measurements: (a) OER polarization curves, (b) Nyquist plots, (c) Tafel slopes of obtained catalysts in 1M KOH.

State of Na ₂ S solution	Element	the element content of the solution (mg/L)	Diluted multiples	Sample element content (mg/L)
initial	Fe	< 0.02	10	< 0.02
final	Fe	0.37	10	3.7
initial	Ni	< 0.02	10	< 0.02
final	Ni	0.15	10	1.46
initial	Co	< 0.02	10	< 0.02
final	Co	< 0.02	10	< 0.02
initial	S	8.35	1000	8354.02
final	S	8.28	1000	8279.81

Table S1 Element content of Fe, Co and Ni in 1M KOH containing Na₂S determined using ICP.

Table S2 Comparison of the OER activity and Tafel slope between FeCoNi-NS-ACVs and other electrocatalysts.

Catalysts	Electrolyt e	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Reference
FeCoNi-NS- ACVs	1 M KOH	125	64.0	This work
NiCo ₂ S ₄ /Fe-2	1 M KOH	200	71.0	Nano Energy 2020, 78, 105230
Ru-RuPx- CoxP	1 M KOH	291	85.4	Nano Energy 2018, 53, 270-276
NiCo-P/NF	1 M KOH	280	73.0	Nano Lett. 2016, 16, 7718–7725
Fe, Mn- Ni ₃ S ₂ /NF	1 M KOH	216	63.3	J. Mater. Chem. A 2017, 5, 14828– 14837.

CoO/Co	1 M KOH	350	97.6	ACS Energy Lett. 2017, 2, 1208–1213
NiSe/NF	1 M KOH	270	64.0	Angew. Chem. Int. Ed. 2015, 54, 9351– 9355.
S:Co ₂ P@Ni foam	1 M KOH	280	71.0	<i>Chem. Mater.</i> 2018, 30, 8861–8870.
NiCoP NR@NS	1 M KOH	268	75.0	ACS Appl. Mat. Inter. 2018, 10, 41237– 41245.
Fe-Mn-O NSs/CC	1 M KOH	273	63.9	<i>Adv. Funct. Mater.</i> 2018, 28, 1802463.

Table S3 Comparison of electrocatalytic performances for OER.

Catalysts	Electrolyte	Overpotential (mV) at 10 mA cm ⁻²	Reference
FeCoNi-NS-ACVs	1 M KOH	125	This work
3D-V-Ni ₃ S ₂ -NiFe	1 M KOH	209	J Mater Chem A 2019, 7, 18118-18125
Ni ₃ S ₂ nanorod@NiFe LDH nanofilms	1 M KOH	245	J Mater Chem A 2018, 6, 10253-10263
FeP/Ni ₂ P	1 M KOH	154	Nat. Commun. 2018, 9, 2551
MoS2/Co9S8/Ni3S2/Ni	1 M KOH	166	J. Am. Chem. Soc. 2019, 141, 10417
MoS ₂ /Ni ₃ S ₂ /Ni	1 M KOH	218	Angew.Chem. Int. Ed., 2016, 128, 6814
NiFe LDH-NS@DG	1 M KOH	210	Adv. Mater. 2017, 29, 1700017
(Fe _x Ni _{1-x})2P	1 M KOH	156	Nano Energy 2017, 38, 553
NiMoOx/NiMoS	1 M KOH	186	Nat. Commun. 2020, 11, 5462
FeCoNi-HNTAs	1 M KOH	184	Nat. Commun. 2018, 9, 2452
V-CoP@a-CeO2	1 M KOH	225	Adv. Funct. Mater. 2020, 30, 1909618

Ni ₃ N/CMFs/Ni ₃ N	1 M KOH	273	J. Mater. Chem. A, 2017, 5, 9377
NiCoP	1 M KOH	242	ACS Catal. 2017, 7, 4131
Co ₉ S ₈	1 М КОН	302	Adv. Funct. Mater., 2017, 1606585
Ni–Fe NP	1 M KOH	200	Nat. Commun. 2019, 10
FeCo-NiSe ₂	1 М КОН	251	Adv. Mater. 2018, 30, 1802121
FeNi ₃ N/Ni	1 М КОН	202	Chem. Mater., 2016, 28, 6934
Ti3C2@mNiCoP	1 M KOH	237	ACS Appl. Mater. Interf. 2020, 12, 18570-18577
N ₂ -CoS ₂ -400	1 M KOH	240	ACS Catal. 2017, 7, 4214

Table S4 Comparison of the Rct (Ω) values of Fe-S, FeCoNi-S, FeNi-NS-ACVs, FeCo-NS-ACVs and FeCoNi-NS-ACVs in 1M KOH.

Cataluata	$\operatorname{Ret}/\Omega$	
Catalysts	1.0 M KOH	
Fe-S	60.17	
FeCoNi-S	1.29	
FeNi- NS-ACVs	0.56	
FeCo- NS-ACVs	15.7	
FeCoNi- NS-ACVs	0.39	

Table S5 Comparison of the electrocatalytic performances overall water splitting

	Catalysts	Electrolyte	Cell Voltage (V) at 10 mA	Reference
--	-----------	-------------	------------------------------	-----------

		cm ⁻²	
FeCoNi-NS-ACVs	1 M KOH	1.37	This work
(NixFe1- x)2P@PC/P	1 M KOH	1.45	<i>Adv. Funct. Mater.</i> 2021, 2010912
Ni/γ-Fe ₂ O ₃	1 M KOH	1.47	Nat. Commun. 2019, 10, 5599
IrNi-FeNi ₃ /NF	1 M KOH	1.47	Appl. Catal. B 2021, 286, 119881
RuCu NSs/C	1 M KOH	1.49	Angew. Chem. Int. Ed. 2019, 58, 13983 – 13988
NiVIr LDH	1 M KOH	1.49	ACS Energy Lett. 2019, 4, 1823–1829
Fe ₂ Co-MOF/NF	1 M KOH	1.49	J. Mater. Chem. A, 2021,9, 11415-11426
FeNiS/Ni	1 M KOH	1.51	<i>Adv. Energy Mater.</i> 2020, 2001963
Ir@S-C/rGO	1 M KOH	1.51	J. Mater. Chem. A, 2021, 9, 4176–4183
Fe-CoP/Ni(OH) ₂	1 M KOH	1.52	Adv. Funct. Mater. 2021, 2101578
CoNC@Co ₂ N/CPs	1 M KOH	1.52	Adv. Energy Mater. 2020, 10, 2002214
NiFe-LDH@NiCu	1 M KOH	1.53	Adv. Mater. 2019, 31, 1806769
FeCoNi/CC	1 M KOH	1.55	Adv. Energy Mater. 2019, 9, 1901312
NiCo-P/NF	1 M KOH	1.58	Nano Lett. 2016, 16, 7718–7725
CoP-InNC	1 M KOH	1.58	Adv. Sci. 2020, 7, 1903195
Ni _{0.75} Fe _{0.25} -N, P, S/C	1 M KOH	1.60	J. Power Sources 2018, 401, 312–321
Cu ₃ N	1 М КОН	1.60	ACS Energy Lett. 2019, 4, 747
O-CoP	1 М КОН	1.60	<i>Adv. Funct. Mater.</i> 2020, 30, 1905252
NiCo ₂ O ₄	1M NaOH	1.65	Angew. Chem. Int. Ed. 2016, 55, 6290 –6294

NiCoFeB	1 M KOH	1.75	Small 2019, 15, 1804212
---------	---------	------	-------------------------