Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Toehold-Mediated Strand Displacement Coupled with Single

Nanoparticle Dark-Field Microscopy Imaging for Ultrasensitive

Biosensing

Shaohua Xu ^{a,b}, Yueliang Wang ^{*a}, Yuanyuan Yao ^a, Lifen Chen ^a, Jiahui Xu ^a, Bin Qiu ^{*c}, and Longhua Guo ^{*a, c}

a. Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China

b. Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China

c. Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China

* Corresponding author.

E-mail: <u>yuel@zjxu.edu.cn</u> (Y Wang); <u>summer328cn@163.com</u> (B Qiu); <u>guolh@fzu.edu.cn</u> (L Guo). Tel: +86 59122866141, Fax: +86 59122866135.

Content

The DNA and RNA sequences and modifications in this work.	S3
The UV-Vis spectrum, TEM and SEM characterization of Au@Ag NCs.	S4
The SEM and EDS characterization of Au@AgNCs during different time.	S5
The optimization of the experimental conditions.	S6
The comparison of analytic performance of diverse methods for miRNA-21 dete	ction.
	S 7

Reference

S8

Name	Sequences (5'-3')
Substrate strand	TCAACATCAGTCTGATAAGCTATAGGGCCGTAAGTTAGTGAGATT
(Sub)	$TTTTTTTT-NH_2$
P1	TCTCACTAACTTACGG
P2	CCCTATAGCTTATCAGACT
Assist strand	TAACTTACGGCCCTATAGCTTATCAGACTTTTTTTTTTT
miRNA-21	
(Target)	UAGCUUAUCAGACUGAUGUUGA
Single base	
mismatched	UAGCUUAUCAGACUGAUGU <u>A</u> GA
miRNA	
Two bases	
mismatched	UA <u>A</u> GUUAUCAGACUGAUGU <u>A</u> GA
miRNA	
miRNA-144	UAACACUGUCUGGUAAAGAUGG
miRNA-122a	UGGAGUGUGACAAUGGUGUUUG
miRNA-32	UAUUGCACAUUACUAAGUUGCA

 Table S1 DNA and RNA sequences in this work.

Figure S1 (A) The UV-Vis spectrum changes during the synthetic process. (B) TEM image of gold seeds before Au@AgNCs prepared. (C) Large scale of SEM image and (D) High resolution transmission electron microscopy image of as prepared Au@Ag NCs.

Figure S2 The SEM (left) and EDS (right) characterization of Au@AgNCs with reaction time at (A) 0 min, (B) 60 min, and (C) 120 min.

Figure S3 The effect of (A) assist concentration, (B) TSMD reaction time, (C) glucose concentration and (D) pH value of buffer solution on the Au@AgNCs scattering intensity changes, target concentration was 100 fM.

Detection	Signal Amplification	Linear Range	Detection Limit	Ref.
Method	Strategy		(fM)	
Fluorescence	nuclease assisted target recycling	0.1~100 nM	100 fM	S 1
Fluorescence	nuclease assisted target recycling	0.5~500 pM	0.4 pM	S2
Fluorescence	enzyme-free amplification	$1.0 \ pM \sim 1.0 \ nM$	1.0 pM	S3
Electrochemical	Hierarchical Flower-Like Gold Nanostructures	1.0 fM~100.0 pM	1.0 fM	S4
Electrochemical	Oligonucleotide encapsulated Ag nanoclusters	100.0 fM ~ 10.0 nM	67 fM	S5
surface-enhanced Raman scattering	catalytic hairpin assembly	10.0 fM~ 100.0 nM	3.5 fM	S6
surface-enhanced Raman scattering	nuclease assisted target recycling	0.33 fM ~ 3.3 pM	42.0 aM	S 7
Point-of-care testing	DNA-inorganic hybrid nanoflowers	$0.5 \sim 100 \ nM$	0.41 nM	S 8
Colorimetric	DNAzyme-coupled branched hybridization chain reaction	$1.0 \text{ pM} \sim 1.0 \text{ nM}$	1.0 pM	S9
Colorimetric	DNA walker, AuNPs	0.05–10.0 pM	16.7 fM	S10
DFM	Enzyme assisted TMSD	1.0 ~ 100.0 fM	1.0 fM	This worł

Table S2 The comparison of analytic performance of diverse methods for miRNA-21 detection.

Reference

- S1. B.-C. Yin, Y.-Q. Liu and B.-C. Ye, J. Am. Chem. Soc., 2012, 134, 5064-5067.
- S2. X. Lin, C. Zhang, Y. Huang, Z. Zhu, X. Chen and C. J. Yang, *Chem. Commun.*, 2013, 49, 7243-7245.
- S3. D. Zhu, L. Zhang, W. Ma, S. Lu and X. Xing, *Biosens. Bioelectron.*, 2015, 65, 152-158.
- S. Su, Y. Wu, D. Zhu, J. Chao, X. Liu, Y. Wan, Y. Su, X. Zuo, C. Fan and L. Wang, *Small*, 2016, 12, 3794-3801.
- S5. H. Dong, S. Jin, H. Ju, K. Hao, L.-P. Xu, H. Lu and X. Zhang, Anal. Chem., 2012, 84, 8670-8674.
- S6. J. Chen, Y. Wu, C. Fu, H. Cao, X. Tan, W. Shi and Z. Wu, *Biosens. Bioelectron.*, 2019, **143**, 111619.
- S7. Y. Yao, H. Zhang, T. Tian, Y. Liu, R. Zhu, J. Ji and B. Liu, *Talanta*, 2021, 235, 122728.
- S8. T. Wu, Y. Yang, Y. Cao, Y. Song, L.-P. Xu, X. Zhang and S. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 42050-42057.
- S9. E. Hosseinzadeh, H. Ravan, A. Mohammadi and H. Pourghadamyari, *Talanta*, 2020, **216**, 120913.
- S10. L. Wang, Z.-J. Liu, H.-X. Cao and G.-X. Liang, Sens. Actuators, B, 2021, 337, 129813.