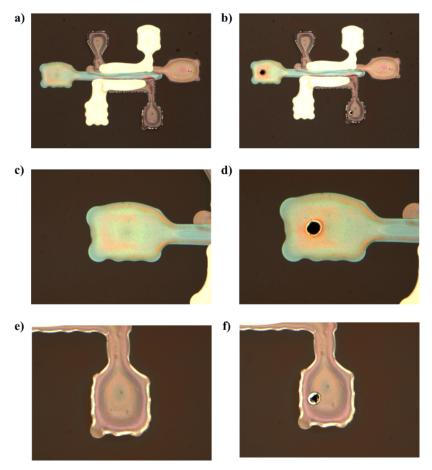
Supporting Information

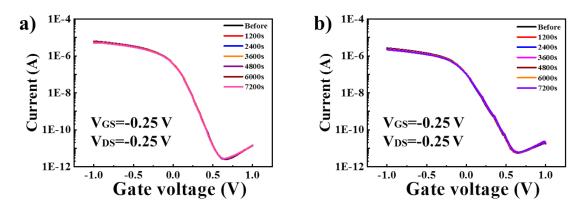
Fabrication and electrical properties of printed threedimensional integrated carbon nanotube PMOS inverters on flexible substrates

Jie Deng^{1,2,3}, Xiaoqian Li³, Min Li³, Xin Wang³, Shuangshuang Shao^{2,3}, Jiaqi Li^{1,2,3}, Yuxiao Fang^{2,3*}, Jianwen Zhao^{2,3*}

¹Institute of Nano Science and Technology, University of Science and Technology of China, 166 Ren Ai Road, SEID SIP, Suzhou, Jiangsu, 215123, PR China


²School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China

³ Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China


* Corresponding authors.

Email: J.W. Zhao (jwzhao2011@sinano.ac.cn);

Y.X. Fang (yxfang2021@sinano.ac.cn)

Figure S1: a, b) Manufacturing positions of through-holes in the manufacturing of SWCNT 3D PMOS inverters printed on PI substrates. c-f) Through-holes prepared by laser drilling.

Figure S2: Transfer characteristic (I_{DS} - V_{GS}) curves of a) bottom-layer device and b) top-layer device measured every 1200 s under continuous bias (V_{DS} = -0.25 V, V_{GS} = -0.25 V).