Supplementary information The wavelength-dependent non-linear absorption and refraction of Au₂₅ and Au₃₈ monolayer-protected clusters

Zhicheng Su,¹ Matias Bejide,¹ Piero Ferrari,^{1,*} Kevin Anthony Kaw,¹ Michèle Moris,², Koen Clays,² Stefan Knoppe,³ Peter Lievens,¹ Ewald Janssens^{1,*}

1 Quantum Solid-State Physics, KU Leuven, 3001 Leuven, Belgium

2 Molecular Imaging and Photonics, KU Leuven, 3001 Leuven, Belgium

3 Institute for Physical Chemistry, University of Stuttgart, 70147 Stuttgart, Germany

1. Reported nonlinear cross section values for Au₂₅ clusters

Table S1: Reported nonlinear cross section values for Au₂₅ clusters protected using different ligands. Measurements are performed using different wavelengths and laser pulse durations. For comparison, our results measured at 630 nm are provided.

Cluster ⁱ	Absorption	Refraction	Excitation	Laser pulse width	Ref.
	Cross section	cross section (δ_{-})	wavelength [nm]		
		[10 ⁴ GM]	[]		
Au ₂₅ (Capt) ₁₈	2.4	-4.0	550	< 120 fs	[1]
	0.085		800		
	0.15		900		
Au ₂₅ (Capt) ₁₈	3.85·10 ⁻⁶	-	800	100 fs	[2]
PAAM-Au ₂₅ (Capt) ₁₈	4.97·10 ⁻⁶	-	800	100 fs	[2]
Au ₂₅ (Capt) ₁₈	0.199	-	875	< 130 fs	[3]
Au ₂₅ (Capt) ₁₈	0.108	-	875	< 130 fs	[3]
Au ₂₅ (Capt) ₁₈	0.095	-	875	< 130 fs	[3]
Au ₂₅ (SG) ₁₈	4.99·10 ⁻⁴	-	755	140 fs	[4]
Au ₂₅ (SG) ₁₈	69.9	-	810	110 fs	[5]
Au ₂₅ (SR) ₁₈	42.7	-	500	< 50 fs	[6]
Au ₂₅ (SR) ₁₈	0.27	-	1290	100 fs	[7]
Au ₂₅ Ag ₆ (SR) ₁₈	88.8	-	500	< 50 fs	[6]
Au ₂₅ (SH) ₁₈ -	43	-	400	-Computational	[8]
	0.27		646	study	
Au ₂₅ (SH) ₁₈ - (DFT)	62	-	785	-Computational	[8]
				study	
Au ₂₅ (GSH) ₁₈ film	19	-	800	30 fs	[9]
Au ₂₅ (C ₆ S) ₁₈ film	150-1050 ⁱⁱ	-	800	30 fs	[9]
Au ₂₅ (GSH) ₁₈ in water	19	-	800	~ 200 fs	[10]
Au ₂₅ (C6) ₁₈ in hexane	42.7	-	800	100 fs	[7]
Au ₂₅ (DDT) ₁₈	2200	-2800	630	6 ns	This work
Au ₃₈ (DDT) ₂₄	31000	14000	630	6 ns	This work

ⁱ SR = SCH₂CH₂Ph, SG = $C_{10}H_{17}N_3O_6S$, SG = glutathione, Capt = captopril (Capt), PAAM = Polyacrylamide, GSH = glutathione. ⁱⁱ Range for varying concentrations.

ⁱⁱⁱ In Ref. [11], nonlinear absorption coefficients (β) of Au₂₅(SR)₁₈ and Au₃₈(SR)₂₄ clusters, measured at 532 nm with pulses of 4 ns are 2·10⁻¹⁰ and 3.5·10⁻¹⁰ m/W, respectively. These numbers are of similar magnitude as our results at 532 nm, however, values cannot be compared directly because no particle concentrations were given in ref. [11].

2. Sample preparation

The synthesis of size selected MPCs follows the Brust-Schiffrin reaction and derived protocols [12]. Briefly, for the Au25 clusters, a precursor solution composed of Au(III) tetrachloroauric acid trihydrate (HAuCl₄·3H₂O) and tetraoctylammonium bromide ([CH₃(CH₂)₇]₄N(Br)) was dissolved in THF. This solution reacts with (pro)ligand 1dodecanethiol (DDT(-H)) to form an Au(I)-thiolate polymer. Borohydride (NaBH₄) dissolved in cold water is used to reduce the formed polymer and assemble the clusters. The crude Au₂₅ MPC were then passed over a silica gel column, using dichloromethane as eluent, to oxidize them and neutralize the created negatively charged particles to obtain pure Au₂₅(SR)₁₈ MPCs. For the Au₃₈ clusters, a methanol solution of Au(III) tetrachloroauric acid trihydrate was mixed with a water solution of glutathione. This allows obtaining glutathionate-stabilized clusters. These clusters were dissolved in a water/acetone solution and mixed with 1-dodecanethiol. The crude Au₃₈ MPC were then passed over a silica gel column, with dichloromethane as eluent, to remove the remaining free thiol and insoluble material. This procedure results in pure Au₃₈(SR)₂₄ MPCs, as was confirmed by reversed-phase highperformance liquid chromatography measurements [13]. Control over the gold:thiol ratio, solvent, temperature, thiol addition rate, steering speed and time allows the formation of a narrow size distribution of clusters. The desired cluster size can be obtained in pure form by fractionated precipitation, size-exclusion chromatography or (for water-soluble clusters) polyacrylamide gel electrophoresis. This process finally produces an atomically precise particle solution.

References

- [1] J. Olesiak-Banska, M. Waszkielewicz, K. Matczyszyn and M. Samoc, RSC Adv., 6, 98748, 2016.
- [2] A. McLean, R. Wang, Y. Huo, A. Cooke, T. Hopkins, N. Potter, Q. Li, J. Isaac, J. Haidar, R. Jin and R. Kopelman, ACS Appl. Nano Mater., 3, 1420–1430, 2020.
- [3] J. Olesiak-Banska, M. Waszkielewicz and M. Samoc, Phys. Chem. Chem. Phys., 20, 24523-24526, 2018.
- [4] I. Russier-Antoine, F. Bertorelle, M. Vojkovic, D. Rayane, E. Salmon, C. Jonin, P. Dugourd, R. Antoine and P.-F. Brevet, Nanoscale, 6, 13572-13578, 2014.
- [5] N. Abeyasinghe, S. Kumar, K. Sun, J. F. Mansfield, R. Jin and T. Goodson III, J. Am. Chem. Soc., 138, 16299–16307, 2016.
- [6] R. Ho-Wu, P. Kumar Sahu, N. Wu, T. Kai Chen, C. Yu, J. Xie and T. Goodson III, J. Phys. Chem. C, 122, 24368–24379, 2018.
- [7] G. Ramakrishna, O. Varnavski, J. Kim, D. Lee and T. Goodson, J. Am. Chem. Soc., 130, 5032–5033, 2008.
- [8] P. N. Day, K. A. Nguyen and R. Pachter, J. Chem. Theory Comput., 6, 2809–2821, 2010.
- [9] R. Ho-Wu, S. H. Yau and T. Goodson, ACS Nano, 10, 562–572, 2016.
- [10] L. Polavarapu, M. Manna and Q.-H. Xu, Nanoscale, 3, 429-434, 2011.
- [11] R. Philip, P. Chantharasupawong, H. Qian, R. Jin and J. Thom-as, Nano Lett., 12, 4661–4667, 2012.
- [12] R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty and N. Garg, J. Phys. Chem. Lett., 1, 2903–2910, 2010.
- [13] S. Knoppe and P. Vogt, Anal. Chem., 91, 1603–1609, 2019.