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Computation of hydration and transfer energies

The cycles for computing the thermodynamics quantities for hydration of water and ionic

species in water bulk, which is used for benchmarking the ab initio computations, and

transfer of ions and ion pairs from water to CNTP are schematically presented in Figure S2.

The excess quantities for hydration of a water molecule (∆Xaq[H2O]) and ions (∆Xeq[Ion])

in aqueous bulk relative to vacuum, where X is either E (electronic energy), H, Gex, or Sex,

were calculated from computed X of corresponding single species in vacuum and in water

clusters as follows:

∆Xaq[H2O] = 1/n ·X[(H2O)n] (1)
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∆Xaq[Ion] = X[Ion(H2O)n]−X[Ion]− n∆Xaq[H2O]. (2)

The equations for calculating the transfer energies of individual ions and ion pairs from water

to CNTP are presented in the main text (see eqs. 9 and 10).

Figure S1: Thermodynamic cycles for computing energies of water hydration (a), ion hydra-
tion (b) and transfer of an ion (c) or an ion pair (d) to CNTP. An ion and carbon, oxygen,
and hydrogen atoms are cyan, grey, red, and white, respectively; positive and negative ions
are presented as blue and green. Water clusters with and without an ion are embedded in a
polarizable continuum with dielectric constant 78.36 representing bulk water. The CNTPs
are surrounded by a continuum of dielectric constant ϵ.

Benchmarking of hydration energies and interaction with benzene

Figure S2a compares the computed thermodynamic quantities for hydration of water and

ions with experimental values. It demonstrates that the selected level of theory (wB97XD/6-

31G(d,p)) adequately reproduces the hydration thermodynamics. Figure S2b demonstrates

a comparison of the experimental and calculated values of the enthalpies of interaction of

water and potassium ion with benzene, as a surrogate model of the nanotube wall, showing

a reasonable agreement a well.
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Figure S2: (A) The benchmarking of calculated hydration energies (non-shaded bars) of H2O,
H+, OH−, K+ and Cl− with them experimental values (shaded bars). Blue, red and dark
green bars are entalpies, excess Gibbs energies and entropies, respectively. The optimized
clusters embedded into IEFPCM model are also presented. (B) Experimental and calculated
enthalpies of benzene complex with H2O and K+. All energies are obtained under standard
conditions (298.15 K, 1 bar). The experimental values are from Y. Marcus John Wiley &
Sons, 2015 1

Derivation of the relation for CNTP conductance

The derivation is for the case when both ion uptake and conductance are controlled by free

potassium and hydroxide ions, eq. 4 in the main text. Further, the assumption of a local

mean-field electric potential is used, while this potential may vary along CNTP. The total

steady-state current I flowing through the CNTP sums up the currents carried by each ion,

which can be related to the gradients of the electric potential and ion concentrations using

the following Nernst-Planck equation

I

F
=

IK + IOH

F
= −D̄KC̄K(∇ lnCK +∇ϕ) + D̄OHC̄OH(∇ lnCOH −∇ϕ), (3)

where Ii, D̄i and C̄i are, respectively, the current, diffusion (mobility) coefficient, and local

concentration of species i within CNTP and the signs before different terms account for

ion charges. The expressions in brackets are driving forces made up of chemical and elec-

tric potential gradients, where Ci (no bar) should be understood as respective equilibrium
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concentrations in solution. To make the notation compact, here C̄i are taken as linear con-

centrations obtained by multiplying volume concentrations in the channel by the channel

cross-section area πr2c , where rc is the channel radius, and potential ϕ is dimensionless, in

units of thermal potential RT/F .

Local electroneutality within CNTP implies C̄OH = C̄K = α(CKCOH)
1/2, where α =

πr2c exp
(
−∆Gex

K +∆Gex
OH

2RT

)
plays the role of the partitioning coefficient (cf. eq. 3 in the paper).

The expressions for currents of individual ions IK and IOH may then be recast as follows

IK
αFD̄K

(CKCOH)
−1/2 = −∇ lnCK −∇ϕ, (4)

IOH

αFD̄OH

(CKCOH)
−1/2 = +∇ lnCOH −∇ϕ. (5)

After subtracting eq. 5 from eq. 4 and multiplying by (CKCOH)
1/2, we obtain

1

αF

(
IK
DK

− IOH

DOH

)
= −(CKCOH)

1/2∇ ln (CKCOH) = −2∇(CKCOH)
1/2 (6)

Since all terms at the l.h.s. of eq. 6 are constant, it may be integrated to derive the linear

variation of (CKCOH)
1/2 along the CNTP (coordinate 0 ≤ x ≤ L)

(CKCOH)
1/2 = (CKCOH)

1/2
x=0 −

1

2αF

(
IK
DK

− IOH

DOH

)
x = (CKCOH)

1/2
x=0 +

x

L
∆(CKCOH)

1/2,

(7)

which also indicates that the r.h.s. of eq. 6 is simply −2∆(CKCOH)
1/2/L. (Here and below

∆ designates the difference between the two solutions connected with CNTP.)

Conversely, after adding up eqs. 4 and 5 and integrating over the entire CNTP length,

we obtain

1

αF

(
IK
D̄K

+
IOH

D̄OH

)
=

1

β
[−2∆ϕ−∆ lnCK +∆ lnCOH ] , (8)
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where β =
L∫
0

(COHCK)
−1/2dx. Equation 7 can be used to obtain β

β =
L

∆(COHCK)1/2

L∫
0

d ln(COHCK)
1/2 = L

∆ ln(COHCK)
1/2

∆(COHCK)1/2
=

L

⟨(COHCK)1/2⟩l.m.

. (9)

Finally, we define ion transport numbers tK = D̄K

D̄K+D̄OH
and tOH = D̄OH

D̄K+D̄OH
= 1 − tK and

use the relation IOH = I− IK to combine eqs 6, 8, and 9, find IK and IOH and obtain eq. 10

I = IK + IOH = G [−∆ϕ− tK∆ lnCK + tOH∆ lnCOH ] , (10)

where the expression in square brackets defines the total potential difference driving the

current and the effective CNTP conductance is given by

G =
αF (D̄K + D̄OH)

β
=

αF (D̄K + D̄OH)

L
⟨(COHCK)

1/2⟩l.m. (11)

When the potential is expressed in Volts, eq. 11 should be multiplied by F/RT to obtain

conductance in Siemens. It is easy to see that, when the product COHCK largely differs

for the two solutions, the conductance is mainly controlled by the solution with the larger

COHCK .

Limiting rate of salt permeation

The limiting rates for permeation of the salt ions, K+ and Cl−, are calculated similar to eq.

11 for OH− in the main text. Taking transport of Cl− as an example and typical values of

chloride mobility in water 2 × 10−9 m2/s, van der Waals radius of (6,6) channel rc = 0.34

nm and salt concentration Cs = 0.1 mol/L, the limiting molar rate, i.e., maximal rate of

chloride diffusion towards or away from the CNTP mouth through the adjacent solution, is

given by
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Q =
ItCl

F
= 2πCCl,bulkDClrc = 0.4 · 10−16 mol/s. (12)

We see that this rate is of the order 10−16 mol/s, while experimentally observed rates at this

salt concentration is of order 10−23 mol/s, cf. Fig. 2b in the main text. Similar result is

easily obtained for other concentrations as well. The diffusion of the salt ions, chloride and

potassium, through solution adjacent to the CNTP mouth is then not a limiting factor, i.e.,

this type of access resistance has significant effect on measured permeation rates.

Transfer parameters for ions and ion pairs obtained from ab initio

calculations

Single ion trasfer

Figure S3: The transfer quantities for water and ions in (5,5) CNTP. For water transfer, the
stars indicate triple-bonded water arrangement inside (6,6) CNTP. The slopes represent the
dielectric energy.

Table S1 presents thermodynamics data for the transfer of single ionic species within

CNT(6,6) and CNT(5,5). The results for CNT(6,6) include results the zigzag and triple-
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bonded (3-bonded) arrangement of water. Fig. S3 presents the same data as bar diagrams

to facilitate comparison with Fig. 1f in the main text.

Figure S4: The maps of electron density distribution for single-file (a) and 3-bonded (b)
water arrangements and for hydrated potassium (c) and chloride (d) ions in CNTP (6,6).
In each case the cross-sections along and across main axis in the middle point are shown.

Transfer of contact and water-separated KOH pairs

Fig. 3a in the main text shows transfer energies for different contact pairs between relevant

ions as a proxy of ion-ion interaction. However, such interactions are expected to weaken

with the distance between the ions, eventually approaching the free-ion limit. To clarify this

effect and quantify the attenuation of ion-ion interaction with distance, in addition to the

thermodynamic transfer parameter of K+OH− ionic pair, they were compute for KOH pairs

with ions separated by one and two water molecules, which is summarized in Table S2. It is

seen that, as the separation between K+ and OH− increases, the transfer energy increases,

i.e., transfer becomes less favorable, approaching that of separate free K+ and OH− ions (last

line in Table S2). Specifically, the gain in enthalpy drops, changing sign for two-molecule

separation, which is only partly compensated by decreasing entropic penalty.
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Table S1: The transfer energies (∆Gex, ∆H, −T∆Sex) of species under consideration at dif-
ferent dielectric constants outside CNT(6,6) and (5,5) (in parenthesis) calculated at wB97X-
D/6-31G(d,p). From left to right: CNT(6,6) 3-bonded / CNT(6,6) zigzag / CNT(5,5)

Species ϵ = 1 ϵ = 2 ϵ = 100
Excess Gibbs transfer energies (∆Gex)

H2O 20.5/-15.8/-8.8 19.7/-17.3/-10.4 21.4/-18.2/-10.5
H+ 40.0/29.9/93.5 7.4/-3.8/50.8 -33.7/-71.3/16.8
OH− 177.7/167.6/202.4 130.3/119.0/151.6 60.7/23.1/93.0
K+ 49.6/39.5/53.2 6.1/-5.1/9.9 -52.0/-89.6/-22.8
Cl− 189.5/179.4/190.1 133.1/121.8/128.7 62.7/25.1/62.6

Enthalpy of transfer (∆H)
H2O 14.4/-17.9/5.4 16.0/-16.5/6.2 20.1/-14.1/8.4
H+ 32.3/3.8/93.1 -0.3/-38.1/50.0 -41.2/-130.7/16.5
OH− 169.4/140.8/208.8 122.4/84.6/58.7 52.7/-36.8/99.9
K+ 43.5/15.0/41.4 0.7/-37.1/-1.2 -56.6/-146.2/-33.2
Cl− 166.3/137.8/186.8 121.7/83.8/137.3 57.7/-31.9/77.5

Excess entropy of transfer (-T∆Sex)
H2O 6.1/2.1/-14.2 3.6/-0.8/-16.6 1.3/-4.1/-18.9
H+ 7.7/26.1/0.5 7.7/34.3/0.8 7.4/59.4/0.3
OH− 8.4/26.8/-6.4 7.8/34.4/-7.1 7.9/59.8/-6.9
K+ 6.1/24.5/11.8 5.4/32.0/11.1 4.6/56.5/10.4
Cl− 23.2/41.5/3.3 11.4/38.0/-8.5 5.0/56.9/-14.9

Ionic mobilities in CNTPs

The experimental and calculated values of the diffusion coefficients of ions and water compiled

from literature are summarized in Table S3. In general, the calculated and experimental

values of the diffusion coefficients of water in CNT(6,6) are within reasonably low range,

except for one outstanding results water in (6,6) tubes at pH 3. The values of the diffusion

coefficients of water and K+ and Li+ ions, computed and obtained using by NMR for Li+

in wider 1.5 nm CNTPs, are close both to each other and to the respective diffusivities in

bulk water, DK 1.96 × 10−5 cm2/s, DLi 1.03 × 10−5 cm2/s.9 Thus, for calculations requiring

the diffusion coefficients of ions and water, we approximated them for bulk values. However,

the diffusivities of H+ and OH− ions are known to be larger due to Grotthus mechanism.

In CNTP(6,6), computations agree well and indicate they are larger than water bulk values
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Table S2: Thermodynamics of water separated and contact K+OH− ionic pairs from water
bulk to CNT(6,6) at ϵ = 2

Ionic pair ∆G, kJ/mol ∆H, kJ/mol -T∆S, kJ/mol

K+OH− -61.6 -87.5 25.9

K+/H2O/OH− -16.8 -24.1 7.3

K+/2H2O/OH− 7.2 4.6 2.6

Free K+ and OH− 62.6 42.5 20.1

Table S3: Summarized experimental and calculated mobilities of water and ions

Species D, cm2/s Conditions Ref.

H2O 4.4± 0.2 · 10−5 (exp.) CNT(6,6) pH 3.0 [2]
8.9± 0.4 · 10−6 (exp.) CNT(6,6) pH 7.8 [2]
1.13 · 10−4 (calc.) CNT(6,6) pH 3.0 [2]
1.07 · 10−5 (calc.) CNT(6,6) [3]
1.2 · 10−5 (calc.) CNT(7,7) [4]
2.2 · 10−5 (exp.) 1.5 nm CNTP [5]
2.3 · 10−5 (calc.) 1.5 nm CNTP [5]
1.5 · 10−5 (calc.) CNT(7,7) [6]

K+ 1.9 · 10−5 (calc.) 1.5 nm CNTP [5]

Li+ 1.2 · 10−5 (exp.) 1.5 nm CNTP [5]
1.1 · 10−5 (calc.) 1.5 nm CNTP [5]

H+ 17 · 10−4 (calc.) CNT(6,6) [7]
19.3− 32.1 · 10−4 (calc.) CNT(6,6) [8]

OH− 24.1− 32.2 · 10−4 (calc.) CNT(6,6) [8]

(DH+ 9.31 × 10−5 cm2/s, DOH− 5.27 × 10−5 cm2/s9) and similar for both ions. The value of

OH− diffusivity used in model fitting (see next), 24 × 10−4 cm2/s, was then selected based

in the values computed for CNTP (6,6).

Fitting of transfer excess Gibbs energies to experimental data on

conductivity and anion permeation in vesicles

For pH 7.5, i.e., COH = 10−6.5 M, the conductivity shows a linear dependence on (CsCOH)
1/2.

These data presented in Figure 2a were fitted to the above equation for conductivity for pH
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7.5, eq. 13, which was recast in the following form

G(pH 7.5) =
F 2

RT

πr2c
L

(D̄K + D̄OH)(COHCK)
1/2 exp

(
−∆Gex

h

RT

)
(13)

The diffusion coefficients of K+ and OH− were approximated as explained in the last

section. Using L = 10.6 nm and van der Waals radius of CNTP(6,6) rc = 0.34 nm, Gex
h

was viewed as the only adjustable parameter, computed from the slope of the fitted linear

dependence passing through the origin (zero intercept) to obtain Gex
h = −3.1± 0.8 kJ/mol.

The analogous relation for pH 3, linear in Cs, is

G(pH 3) =
F 2

RT

πr2c
L

(D̄K + D̄Cl)Cs exp

(
−∆Gex

s

RT

)
(14)

Using as estimates bulk values DK 1.96 × 10−5 cm2/s and DCl 2.03 × 10−5 cm2/s (see last

section), the slope fitted to linear dependence of G on Cs yield Gex
s = 7.6± 0.3 kJ/mol.

In a similar manner, we fitted to the experimental chloride permeation rate QCl at pH 7

in Fig. 2b to the relation

QCl(pH 7.5) =
πr2c
L

D̄ClC
3/2
s C

−1/2
OH exp

(
−∆G̃ex

s

RT

)
, (15)

The chloride transfer rate per CNTP in Fig. 2b was computed from the digitised row data

for chloride flux in vesicles reported by Li et al.10 and rescaled using the factor based on the

chloride permeability reported in this paper. The the best fit to eq. 15 yielded the value

∆G̃ex
s = 63.3± 0.2 kJ/mol presented in Fig. 2b.

Figure S5 also presents raw data form Li et al. scaled in 3 different ways. This demon-

strates that, while the plot of chloride flux versus C
3/2
s shows a good linear relation with

zero intercept (panel b), the plots versus Cs and C2
s show a non-linear dependence, with a

non-zero-intercept for linear fits.
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Figure S5: Chloride flux as a function of salt concentration. The data points were digitized
from Li et al.10

Interpolation of the water transfer energies

For simplicity we consider the system has a very low compressibility and ignore the negligble

differences between the Gibbs and Helmholtz free energies, G and F , as well as between

internal energy and enthalpy, U and H. We then can use more common partition functions

Q to express statistical thermodynamic relations for constant volume instead of its more

complicated analogues for constant pressure. Thus F , U , Q are related as follows

e−F/RT = Q =
∑

ωie
−Ui/RT , (16)

U =
∑

ωiUie
−Ui/RT/Q or

∑
ωiUie

−Ui/RT = Ue−F/RT (17)

where ωi and Ui are the degeneracy and and energy of a state, respectively, and summation

is over different states. We assume that zigzag and triple-bonded arrangements form two

distinct minima, ”1” and ”2”, in the energy landscape, around which most water molecules

are found. When the transition between arrangements is unlikely due to a high barrier, the

sums in above equations may be approximated by splitting to two subsums, whose values

may be related to thermodynamic parameters, F1, U1 and F2, U2 computed by Gaussian

for the situations, where the system is trapped in the corresponding arrangement as a local

energy minimum. We may then approximately view the equilibrium as a superposition of

the arrangements ”1” and ”2” weight by corresponding fractions x1 and x2 = 1 − x1. We
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then approximate F and U of the system as

e−F/RT = x1e
−F1/RT + (1− x1)e

−F2/RT and Ue−F/RT = x1U1e
−F1/RT + (1− x1)U2e

−F2/RT

(18)

The fraction x1 of molecules that assume arrangement ”1” is computed by requiring that the

system is in equilibrium with bulk water, i.e., by setting total F equal to that of bulk water.

We then may write down for corresponding transfer quantities (∆ designating difference

between water in CNTP and bulk water)

e−∆F/RT = x1e
−∆F1/RT + (1− x1)e

−∆F2/RT = 1, (19)

which gives x1 as

x1 =
1− e−∆F2/RT

e−∆F1/RT − e−∆F2/RT
≈ e∆F1/RT (20)

The last approximate relation holds, when ∆F1/RT is large and negative and also much

lower than ∆F2/RT that is large and positive, as was obtained for the zigzag and triple-

bonded states, respectively (cf. Fig. 1f in the main text). Note one of the arrangements

”1” ad ”2” must have a positive and the other a negative ∆F to allow equilibrium with

water. Note that x1 is then very small, i.e., only a small fraction of water will assume this

arrangement, however, it will determine the transfer enthalpy. Indeed, using this x1 and eq.

18, we find U as

U = x1U1e
−∆F1/RT + (1− x1)U2e

−∆F2/RT ) ≈ U1 + U2(1− e∆F1/RT )e−∆F2/RT ≈ U1 (21)

This also means ∆U ≈ ∆U1. Due to negligible difference between U and H, this also means

∆H ≈ ∆H1, i..e, transfer enthalpy will be dictated by the lowest free energy arrangement.
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