Appendix. Supplementary materials

Multifunctional integrated VN/V$_2$O$_5$ heterostructure sulfur hosts for advanced lithium-sulfur batteries

Bo-Tian Liua,b$^{#}$, Huan Lic$^{#}$, Chenglong Shia, Junlong Suna, Shunhua Xiaoa, Youyong Panga, Jianwen Yanga, Yanwei Li*

aGuangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.

bGuangdong Institute of Semiconductor Industrial Technology, Guangdong Academy of Science, Guangzhou 510650, China.

cSchool of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.

$^{#}$Authors contributed equally

*Corresponding author

Email: btliu2018@glut.edu.cn (B.-T Liu); lywhit@126.com (Y. Li)
Figure S1. (a-e) HAADF-TEM image and corresponding EELS elemental mapping of \(\text{VN}_2\text{O}_5 \) sample, (f) SAED pattern and corresponding \(\text{V}_2\text{O}_5 \) (211), VN (200) and VN (220) crystal plane of \(\text{VN}_2\text{O}_5 \) sample.
Figure S2. Digital photograph showing the V$_2$O$_5$ dissolution test by 5% H$_2$O$_2$ treatment.

Form the dissolution test result, the actual VN content is ~23.4 wt%.
Figure S3. Cyclic performance of VN/V$_2$O$_5$ and V$_2$O$_5$ cathodes without sulfur loading.
Figure S4. EIS curves of (a) V$_2$O$_5$-S and (b) VN/V$_2$O$_5$-S cathodes before/after cycling.

Figure S5. TGA curve of VN/V$_2$O$_5$-S in N$_2$ atmosphere heated from room temperature to 500 °C with the ramping rate of 10 °C min$^{-1}$.
Figure S6. GDC profiles of the high sulfur loading VN/V$_2$O$_5$-S cathode at various rates.

Figure S7. (a) Cross-sectional SEM image of VN/V$_2$O$_5$-S cathode, and (b) corresponding element mapping images.