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1 Invertible neural networks
Invertible neural networks (INNs) and conditional INNs (cINNs)
have recently been found to achieve state-of-the-art results for
solving general data-driven inverse problems1–3, however they
have yet to be explored for AEM problems. In this work we adapt
INNs and cINNs to solve inverse AEM problems. We next summa-
rize the technical details of these methods, however, readers can
find a complete description for the INN in Ardizzone et al.1 and
the cINN in Kruse et al.2.

INNs are based upon flow-based models4–6, which assume that
all data can be modeled as a sample from some non-elementary
probability distribution, denoted as S ∼ pS(s) where pS(s) is the
probability distribution of S. Then it is assumed that S = fθ (Z),
where Z∼ pZ(z) is a multi-dimensional Gaussian distribution with
a diagonal covariance matrix (i.e., each random variable is in-
dependent), and f is some function parameterized by θ . Al-
though most real-world data (e.g., images or spectra) are not
well-modeled by a multi-dimensional Gaussian, if fθ is suffi-
ciently complex then pS will also be sufficiently complex to ac-
curately model real-world data.

To achieve this level of complexity, the transformation is of-
ten implemented with a deep neural network, and the parame-
ters θ are learned based upon real-world data. Other contempo-
rary models make the aforementioned assumptions (notably, the
variational autoencoder) however, flow-based models (FBMs) are
unique because they impose structure on the deep neural net-
work that ensures that it is bijective (a one-to-one mapping), and
therefore invertible. Furthermore, the inverse function f−1 can
be readily evaluated once the FBM is trained (i.e., once we infer
f ), so that it is trivial to evaluate by s = f (z) or z = f−1(s)

Invertible Neural Network (INN). Inspired by the success of
FBMs in modeling complicated distributions,5,6 Ardizzone et al.1

adapted the FBM to solving inverse problems. One constraint
of the FBMs is that the dimensionality of its input and output
must be identical, however, in most inverse problems the out-
put is lower-dimensional than the input (i.e., |s| < |g| using our
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notation). To overcome this issue, they propose to formulate
the forward model as [s,z] = f (g), where z is a normally dis-
tributed random variable. The dimensionality of z is chosen so
that |s|+ |z|= |g|. Then we train a FBM (i.e., an invertible neural
network), fθ , that approximates the forward model, and where
θ represents the network parameters. Because the network is in-
vertible, given a particular value of s and a randomly-sampled
value of z, we can also compute ĝ = f (s,z). We can propose mul-
tiple solutions for a given value of s by sampling multiple values
of z and passing them through f−1

θ
with the same value of s.

The INN is trained by making forward passes (i.e., computing
[s,z] = fθ (g)) for samples of data in the training dataset. The
parameters of the model are adapted to make accurate predic-
tions of s as well as making predictions of z that are normally
distributed. Mathematically, the objective function, or "loss", for
training the INN is given by:

L =
1
2
·
(

1
σ2 · (ŝ− s)2 + z2

)
− log |detJg 7→[s,z]|. (1)

Here σ is a hyper-parameter controlling the trade-off between

Fig. 1 Schematic architecture of an Invertible Neural Network.

accurate s prediction and the normality of z. The variable J rep-
resents the Jacobian matrix of the mapping learned by the neu-
ral network to account for the probability volume change due to
change of variable, which is trivially computed using invertible
network structure . INNs can also optionally be trained with an
additional loss term comprising a maximum mean discrepancy
(MMD)7 measure, however, the INN was found to make more ac-
curate predictions without it1, and therefore we exclude it from
our implementation.

In all of the AEM problems considered in our benchmark the
dimensionality of the output is substantially larger than the input
(i.e., |s|>> |g|), breaking an assumption of the INN that |s|< |g|.
To address this problem we follow the approach in1 and concate-
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nate a vector of zeros to g so that |g|+ |g0| = |s|+ |z|, where g0

is the vector of zeros. This ad-hoc procedure is remedied by the
cINN, which is described next.

Conditional Invertible Neural Network (cINN). The cINN
was introduced in Kruse et al.2, and reformulates the inverse
problem as z = f (g|s), where z is a vector sampled from a multi-
dimensional Normal distribution. Once again we use a neural
network to model f based upon data, however the goal is now
to learn a mapping between g and z that is conditioned upon s.
The authors propose an architectural change to the original in-
vertible neural network so that the function can be conditioned
on some auxiliary value (e.g., s in our case) whether mapping in
the forward or inverse direction. This formulation implies that
the dimensionality of s and g no longer need to match, and we
simply need to set the dimensionality of z to match g. The cINN
model trains with the following loss function:

L =
1
2

z2− log |detJg 7→z|. (2)

Similar to the INN, the loss enforces the normality of z, however, s

Fig. 2 Schematic architecture of a conditional Invertible Neural Network.

no longer appears because the cINN is not tasked with predicting
it. Once again J represents the Jacobian matrix of the mapping
learned by the neural network, this time when mapping from g to
z.

2 Benchmark deep inverse models
Here we describe two key properties of DIMs with respect to AEM
applications. Table 2 is main text classifies each of our benchmark
models according to several properties – discussed next. The first
important property is whether a DIM produces multiple solutions.
As we find in result section of main text, models that are permit-
ted to propose several solutions often also find progressively bet-
ter solutions (i.e., rT reduces as T grows). This capability also
makes it possible for the designer to consider several viable so-
lutions that may have somewhat different scattering, and choose
the one that is best-suited for the application. It is important to
note that each additional model proposal that is considered re-
quires an evaluation of the true forward model, f , which imposes
a (usually modest) trade-off between design quality and compu-
tation time.

A second important property of some DIMs is that they rely on
an iterative process for inferring each inverse solution. Most DIMs
attempt to learn a direct mapping from s to g, and therefore infer-
ence of a single solution proposal is computationally efficient. In
contrast, iterative methods usually make an initial set of guesses
for the inverse solution, denoted Z0. A search for superior solu-
tions is then performed based upon Z0, and the results are used to
update Z0. This process is then repeated for some fixed number of

iterations, or until the quality of the solutions (e.g., estimated res-
imulation error) no longer improves. As we find iterative methods
can often achieve the superior accuracy, although the computa-
tion required to infer solutions can be substantially larger than
other methods. It is worth noting however, that this additional
computation time is usually only a small fraction of the time for
other processes, such as training the DIMs or evaluating f using
computational simulators.

2.1 Description of benchmark models

In this section we provide brief descriptions of each benchmark
model. We focus on describing the specific implementation that
we use for our experiments, and its justification. For a more thor-
ough treatment of the models we refer readers to recent reviews8.

Conventional Deep Neural Network (DNN). In this approach
the inverse problem is treated as a standard regression problem
and a conventional DNN is used9–13. Input is the spectra or re-
sponse property of metamaterial and the output is the geometry
properties. The backpropagation of a standard regression loss
(e.g., mean-squared error) between the predicted and the true
geometry updates the parameters of the neural network. No ad-
ditional techniques are incorporated to compensate for one-to-
many mappings between spectra and geometry. During training,
the network is penalized for deviations between predicted geome-
tries and the input spectrum’s true geometry regardless of the re-
simulation error between the target spectrum and spectrum of the
predicted geometry. Residual connections, convolutional layers,
batch normalization and dropouts can be added to boost perfor-
mance when needed. In our specific implementation, we added
batch normalization for all of three datasets for convergence ac-
celeration.

Genetic Algorithm (GA). Genetic Algorithms (GAs), a set
of iterative, optimization-based algorithms for inverse AEM de-
sign14–16. Our GA closely follows the model employed in Zhang
et al15 and Forestiere et al16 to solve inverse AEM problems. The
GA first produces a set, or population, of initial geometries by
randomly sampling each parameter of the geometry from a uni-
form distribution. Each geometry is then passed through the for-
ward model of the process, s = f (g), so that its re-simulation er-
ror can be computed with respect to the target spectrum. This
re-simulation error is used to determine the quality or "fitness"
of each geometry in the population. The traditional implemen-
tation of the GA relies on evaluating the true forward model for
each candidate geometry, which can be computationally inten-
sive if this requires computational simulation, as is the case for
our ADM problem. To overcome this obstacle, we train a deep
neural network to approximate f , and use this to compute the
re-simulation error, dramatically accelerating the inference time
of the GA.

Once the fitness of each candidate geometry is comptued, the
next step is the selection of “parent” geometries from this popula-
tion. Crossover and mutation operations on this “parent” subset
produce the next generation. We utilize a “roulette-wheel” selec-
tion pattern, as implemented by Zhang et al15 and Forestiere et
al16, to select parent geometries. In roulette-wheel selection, the
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probability of a particular geometry being selected is proportional
to that geometry’s fitness. Our GA also implements “elitism”,
whereby copies of a certain number (determined by the elitism
hyper-parameter) of geometries of absolute greatest fitness auto-
matically pass to the future child population without undergoing
mutation or crossover.

Neural Adjoint (NA). Neural Adjoint (NA) method was re-
cently proposed in Ren et al.17 and subsequently found to be
highly effective for solving AEM inverse problems Deng et al.18.
The NA is a gradient-based optimization approach that was de-
veloped based upon similar earlier methods employed in the AEM
community17–21. The NA relies on the pre-trained forward net-
work that maps from g to s space accurately as a proxy forward
model to provide analytical gradient feedback during inverse in-
ference. After the training of the forward network, by freezing
the network weights and setting the input geometries as trainable
parameters, it iteratively trains a set of (randomly) initial geome-
tries to approach the target spectrum output by backpropagation
of a mean squared error and boundary loss over the output and
target spectra. The key difference between the NA and prior ap-
proaches is an additional boundary loss term17, which steeply
penalizes geometries outside the training domain of the proxy
forward neural network to ensure that the network only returns
g values that are within the domain of the training data (where
the proxy model makes accurate predictions). The boundary loss
was found to greatly improve the performance compared to prior
methods, and therefore we adopt the NA from Ren et al.17 here.

Tandem Network (TD). The so-called data collision problem
causes unstable gradient signals, and one method proposed to
mitigate this issue is the tandem structure22–35. TDs first train a
neural network, the forward network, capable of accurately solv-
ing the forward problem from g to s with standard regression loss
(MSE). The forward network’s weights are then fixed and its in-
puts are tied to the outputs of a second, separate network. The
combined network is trained on the inverse problem. The fixed-
weight forward network approximates a geometry-to-spectra sim-
ulator, training the pre-pended network with a standard regres-
sion loss between the predicted and input spectrum. The pre-
pended network then learns a one-to-one relationship from input
spectra and output geometries. As there is not much variation be-
tween TD architectures, we used the initial implementation of22

with the modification to add a boundary loss term that was pro-
posed in Ren et al.17, since this was found to significantly improve
its performance.

Mixture Density Network (MDN). MDNs36 account for the
one-to-many nature of the inverse problem by assuming the dis-
tribution of conditional probability p(g|s) is a mixture of Gaussian
random variables. Its effectiveness has been shown on recent
AEM design17,37,38. The number of Gaussian mixtures approx-
imates the number of "many" in the one-to-many setting (hardly
known beforehand) and is a sensitive hyper-parameter that has to
be tuned carefully using a validaton set. We used the same imple-
mentation of the MDN as that presented in the literature where a
diagonal covariance matrix were used.37

Conditional Variational Autoencoder (VAE). VAEs39 also
model the inverse problem probabilisticly and have shown suc-

cessful design results in AEM40–47. Similar to an auto-encoder,
where the inputs are encoded into latent space and decoded
back for the reconstruction of the original input signal, VAEs
uses a variational approach and encourage the latent space to be-
come a Gaussian distribution. In AEM design space, the encoder
(p(z|g,s)) encodes g into latent space z conditioned on s, and the
decoder (p(g|z,s)) decodes the sampled latent space variable z
into g conditioned on s as well. During the inference phase, a
random sample is drawn from the latent space and passed to the
decoder to get the inverse solution conditioned on a given desired
s. We used the original architecture from Ma et al.41 without
the convolution layers as none of our geometries are 2D and a
parametric assumption of Gaussian latent space is effectively the
same but architecturally simpler than the adversarial approach
proposed by Kudyshev et al.42.

3 Deep inverse models: further details

Here we supply additional details of the deep inverse models be-
ing benchmarked in this work.

3.1 Genetic Algorithm (GA).

For GA, we provide extra details for how the mutation steps are
carried out here: Parents are arranged into pairs, with each pair
producing two child geometries via single-point crossover and
point mutation. The probability of a pair undergoing crossover
is defined by a hyper-parameter termed the crossover rate. In
single-point crossover, a splice point is randomly selected along
the geometry parameter vector with uniform probability. Param-
eters following the splice point are swapped between the pair of
parents. The resulting population undergoes point mutation. In
point mutation, parameters of each geometry in the population
are replaced at random by new parameters in the domain with a
probability determined by a hyper-parameter called the mutation
rate. The resulting child population replaces the original popula-
tion in the next iteration. The overall process can be found below:

Fig. 3 Schematic architecture of Genetic Algorithm

3.2 Neural Adjoint with Boundary Loss (NA).

We supply the loss function and the process flow chart of the NA
method. The loss function during inference time can be written
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as:

Ltrain = ( f̂ (g)− sgt)
2 (3)

Lin f er = ( f̂ (ĝ)−ggt)
2 +Lbdy (4)

Lbdy = ReLU(|ĝ−µg|−
1
2

Rg) (5)

where f̂ is the forward proxy function, µg and Rg are the mean

Fig. 4 Schematic architecture of Neural Adjoint

and range of the training set g. ĝ is the trainable parameter of ge-
ometry during inference (g0 randomly initialized and equivalent
to z in probabilistic methods)

3.3 Naive Neural Network (NN).
We supply the loss function and the process flow chart of the NN
method. The loss function is as follows where f−1 represents the
naive neural network.

L = ( f−1(s)−ggt)
2 (6)

Fig. 5 Schematic architecture of Naive Neural Network

3.4 Tandem Network (TD).
We supply the loss function and the process flow chart of the TD
method. The 2-stage training loss function for TD are as follows

L1 = ( f̂ (g)− sgt)
2 (7)

L2 = ( f̂ ( f−1(s))−ggt)
2 +Lbdy (8)

where the Lbdy is the same as defined in eq 5. In our benchmark-
ing tasks, to make a fair comparison, the same forward network
f̂ is used for TD, the Genetic Algorithm, and the Neural Adjoint
with boundary loss.

Fig. 6 Schematic architecture of Tandem model

3.5 Mixture Density Network (MDN).

We supply the loss function and the process flow chart of the MDN
method. The loss function is as follows where pi,µi,Σi represents
the probability of geometry coming from Gaussian distribution i
and the mean and variance of Gaussian distribution i.

L =− log(∑
i

pi ∗ |Σ−1
i |

1
2 ∗ exp(−1

2
(µi−g)T

Σ
−1
i (µi−g))) (9)

Fig. 7 Schematic architecture of Mixture Density Network

3.6 Conditional Variational Autoencoder (cVAE).

We supply the loss function and the process flow chart of the TD
method. The following loss term captures the training process of
a cVAE. z is forced to follow a normal distribution (µz,σz is the
mean and variance of z) and trained by minimizing the KL diver-
gence between the encoder q(z|g,s) and a normal distribution. A
mean squared reconstruction loss encourages the decoder p(g|z,s)
to accurately reconstruct the input geometry given a latent vector
sampled from z and the condition s. α is a hyper-parameter trad-
ing off the reconstruction and normality of the latent space and
needs to be tuned carefully on a validation set.

L = (g− ĝ)2− α

2
· (1+ logσz +µ

2
z −σz) (10)

Fig. 8 Schematic architecture of Conditional Variational Autoencoder

4 Forward surrogate models

4.1 Forward model performance compared to original work

Our forward models are optimized for each benchmarking task.
For the Shell problem we achieved a forward model MRE of
0.65%, compared to 1.5% in the original work over 5,000 test
samples. For the Graphene-Si3N4 2D Multi-layer Stack, our NN
achived MRE of 0.4% while Chen et al. reported with MRE of
3.2% given 1,000 samples9. On the Super-unit Cell benchmark
solved by Deng et al18, we get similar MSE values (1.2e-3) on
T = 1 performance.

5 Model size
Here we present the table of model size in number of trainable
parameters in Table 1.
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Model Multi-layer Stack (Chen) Multi-layer Shell (Peurifoy) Super-unit Cell (Deng)

Conventional Deep Neural Network (NN) 16M 25M 36M
Tandem (TD) 3M 93M 47M

Genetic Algorithm 4M 40M 17M
Neural Adjoint (NA) 4M 40M 17M

Variational Auto-encoder (cVAE) 12M 18M 14M
Invertible Neural Network (INN) 8M 35M 25M

Conditional Invertible Neural Network (cINN) 3M 35M 23M
Mixture Density Network (MDN) 0.4M 0.1M 1M

Table 1 Model size reflected by the total number of trainable parameters. Note that the tandem model is typically bigger due to it make use of a
forward and a backward model and MDN models are small due to after hyper-parameter sweep all larger models exhibit much worse performance than
the current selected best one.

6 r̂T metric visualization

The r̂T metrics captures the performance of our DIMs’ improve-
ment with respect to the number of simulations allowed (or
trails). It is defined as

r̂T =
1
|Dte| ∑

s∈Dte

[ min
i∈[1,T ]

L (ŝ(zi),s)]

where Dte is the test set and ŝzi is the simulated spectra of the
inverse solution when latent vector zi is input into the DIM of
interest.

To better help with the understanding of this value, we plot
L (ŝ(zi),s) along with mini∈[1,T ]L (ŝ(zi),s) to illustrate this process
of taking the minimum in Fig 9. As the plot shows, the minimal
error is taken across all values of [1, T] for each target spectra
and hence it is monotonic decreasing. The final r̂T is averaged
across 500 different test target spectra.

Fig. 9 Comparison between individual solution error and minimal error
for error of the 200 solution proposals made by cINN on Stack dataset
(randomly selected) on one single randomly chosen target spectra. X
axis is T, the number of proposed solutions and y axis is L (ŝ,s), which is
measured in MSE. As the plot shows, as minimal error is taken till current
T value, the minimal value is monotonic decreasing (non-increasing).

7 Stack dataset DIM performance improve-
ment over T

In main text, we discussed that the performance improvement
over T for DIMs on Stack dataset is mainly due to "jittering"
around the solution space instead of actually finding new solu-
tions, here we show empirical evidence Fig 10 supporting the
claim.

As Fig 10 shows, all top 50 points cluster nicely in local regions,
supporting the statement that these DIMs only explore locally for
the Stack dataset (with the lowest non-uniqueness) when T gets
larger.

8 Another metric for one-to-many based on
neighbourhood

We also provide some quantified measurement of the distance
that is not distorted by the dimensionality reduction, we pro-
vide Dr (defined below) to reflect the "localness" of the clustered
points, normalized by the pairwise distance of the whole dataset.
Dr ≈ 1 would mean that the cluster is closer to randomly drawn
from the whole dataset, therefore a localized draw would have a
Dr < 1.

Dr =
Avg pairwise G distance within cluster

Avg pairwise G distance between all points

=

1
C

∑
C
c

1
K(K−1)

∑
K
i ∑

K
j 6=i |Gc,i−Gc, j|2

1
N(N−1)

∑
N
i ∑

N
j 6=i |Gi−G j|2

where C is the number of cluster (5 in our case), K is the number
of data points in each cluster (5 in our case), N is the size of the
whole dataset, Gc,i represents the i-th geometry of cluster c.

The Dr value is labelled on the right top corner of Fig ??. As
this "closeness" measure increase from order: Stack < Shell <
ADM, we see the same trend quantitatively with the perceived
one-to-manyness on the plot as well.

9 Hardware for training used
Here we list the hardwares we used in the model training and
inference to provide context for our running time. We are using
NVIDIA GTX3090 cards for GPU, AMD 3990X (64 cores, 2.90GHz,
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Fig. 10 Cluster effect of retrieved ĝ of Stack dataset top-3 performing algorithms (at T=200) top 50 proposed solution. Same as the main text umap
plot, the background grey points are the scatter point of all point of Stack dataset. On top of that, for each of the 5 random spectra (labelled by
different color), 200 random ĝ was retrieved by individual models and top 50 chosen by the real simulator.

Dataset Stack Shell ADM

γ 0.52 1.43 15.0
Dr 0.24 0.58 0.84

Table 2 Ratio of forward problem MSE and inverse problem MSE and
perceived one-to-manyness

256 MB cache), RAM: 256GB.
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