Electronic Supplementary Information (ESI) for

Defective 2D Silicon Phosphide Monolayers for Electrochemical Nitrogen

Reduction Reaction: A DFT Study

Zhongyuan Guo,^{a,b} Tianyi Wang,^{a,b} Haikun Liu,^a Siyao Qiu,^a,^{*} Xiaoli Zhang,^c Yongjun Xu,^a Steven J. Langford,^b Chenghua Sun^b,^{*}

^a Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523808, China.

^b Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

^c School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

*Corresponding authors. E-mails: qiusy@dgut.edu.au; chenghuasun@swin.edu.au

1. 2D SiP structures

Fig. S1. Optimized unit cell and supercell of 2D SiP. Color scheme: Si (yellow), P (purple).

2. N₂ adsorption on 2D SiP

Fig. S2. Physisorption interaction between N2 and 2D pristine SiP. Color scheme: Si (yellow), P (purple),

and N (blue).

3. Characteristics of defective SiP

Potential	Binding energies (E_b) of P in	Defective SiP	Fromation energes $(E_{\rm f})$ of Dn-
defective sites	different positions/eV	catalysts	SiP ($n = 1, 2, and 3$)/eV
D1	-6.72	D1-SiP	2.89
D2	-6.75	D2-SiP	2.50
D3	-6.58	D3-SiP	2.59

Table S1. Binding energies of surface P atoms and formation energies of defective SiP

Table S2. Charges and spin of Si atoms on defective sites of 2D SiP

Defective SiD	Defective sites	Mulliken	Swin /hhan	Hirshfeld	Serie /hhav
Delective SII	Delective sites	charges/ e	Spin/ndar	charges/ e	Spin/ndar
	Si1	+0.14	-0.02	+0.06	0.00
D1-SiP	Si2	+0.17	+0.12	+0.06	+0.08
	Si3	+0.17	+0.12	+0.06	+0.08
	Si1	+0.09	0.00	+0.04	0.00
D2-SiP	Si2	+0.16	0.00	+0.06	0.00
	Si3	+0.16	0.00	+0.06	0.00
	Si1	+0.15	+0.02	+0.06	0.00
D3-SiP	Si2	+0.16	-0.08	+0.06	-0.06
	Si3	+0.16	-0.08	+0.06	-0.06

4. PDOS of Si atoms on defective sites

Fig. S3. PDOS of Si atoms on defective sites of 2D SiP, including the s and p-orbital contributons. Inserts

in Figures are the schematic diagram of active Si atoms (named as Si1, Si2 and Si3) around the P-defects.

Color scheme: Si (yellow), P (purple). Color scheme: Si (yellow), P (purple).

5. Charge analysis for *N₂ on defective SiP

Table S3. Charges and	l spin analyses	for chemically adsorbed	*N ₂ on 2D SiP
-----------------------	-----------------	-------------------------	---------------------------

Catalysts	Mulliken charges/ e	Spin/hbar	Hirshfeld charges/ e	Spin/hbar
D1-SiP	-1.33	0.40	-0.36	0.34
D2-SiP	-1.39	-0.40	-0.32	-0.33
D3-SiP	-1.34	0.39	-0.36	0.33

6. ΔG_{max}^{NRR} vs. ΔG_{max}^{HER} on D1-SiP

Table S4. Maxmium free energy analyses for NRR and HER, respectively, under $U_{applied} = 0$ V and $U_{applied}$

= -0.87 V

Reaction nathways	ΔG	NRR max	Adsorption species	ΔG_{max}^{HER}	
Reaction pathways	$\mathbf{U} = 0 \mathbf{V}$	U = -0.87 V	rusorption species	$\mathbf{U} = 0 \mathbf{V}$	U = -0.87 V
Path1 (consecutive)	1.17 eV	0.30 eV	*日 1	0.22 eV	1 00 eV
Path2 (enzymatic)	1.25 eV	0.38 eV	11_1	0.22 CV	1.09 CV
Path3 (consecutive)	1.38 eV	0.51 eV	*Ц 2	0.63 eV	1.50 eV
Path4 (enzymatic)	0.87 eV	0.00 eV	11_2	0.03 e v	1.50 CV

7. H₂O adsorption on D1-SiP

Fig. S4 The top (a & b) and side views (c & d) of two different physioadsorption configurations of H₂O on D1-SiP. Color scheme: Si (yellow), P (purple), O (red), and H (white).

8. DOS analysis for adsorbed N_2 on D1-SiP

Fig. S5 DOS analysis for (a) the free N₂ molecule and (b) *N*N on D1-SiP. Inserts are the strucutre image and the corresponding spin density (Isosurface: 0.01 a.u.). Color scheme: Si (yellow), P (purple), and N

(blue).

9. N-N bond evolution along the optimal pathway (Path4)

Fig. S6 The N-N bond evolution along the Path4. The dash line indicates the level of N-N bond length of a free N₂ molecule. Step1 suggests the adsorption step of N₂, then step2-step5 indicate the hydrogenation processes.

6

10. AIMD simulation of D1-SiP

Fig. S7 Variations of (a) energy and (b) temperature of the defective D1-SiP system against the time in the AIMD simulation at 300 K for 4 ps with a time step of 2 fs. Color scheme: Si (yellow), P (purple).

11. Density functional theory data

11.1 Thermochemistry of $0.5N_2 + 1.5H_2 \rightarrow NH_3$

The Gibbs free energy calculation was performed as follows:

$$\Delta \mu = \Delta E_{\rm DFT} + \Delta E_{ZPE} - T \cdot \Delta S \tag{1}$$

where μ , E_{DFT} , and E_{ZPE} represent the chemical potential (Gibbs freeenergy per molecular), electronic energy, and zero-point energy, respectively. The entropy (*S*) consists of the translational (*S*_t), rational (*S*_r), vibrational (*S*_v) and electronic contributions (*S*_e) and thus can be expressed as:

$$S = S_{\rm t} + S_{\rm r} + S_{\rm v} + S_{\rm e} \tag{2}$$

Gases	<i>E</i> _{DFT} /eV ^a	ZPE/eV ^b	- <i>T</i> · <i>S</i> °	μ
$H_{2}(g)$	-32.04	0.27	-0.40	-32.17
N ₂ (g)	-539.86	0.15	-0.59	-540.30
$NH_{3}(g)$	-318.89	0.89	-0.60	-318.60

where S_e is around zero at the foundamental electronic level.

^a Obtained from DFT calculations.

^{b, c} Obtained from the NIST database (https://cccbdb.nist.gov).

11.2 Test calculations of K-point sets

Table S5. Test calculations of K-point set

Spacios		Electronic energies/eV				
species	(3×1×1)	(3×2×1)	(3×3×1)			
D1-SiP	-10145.34	-10145.36	-10145.36			
*N*N	-10685.47	-10685.50	-10685.50			
*N*NH	-10702.99	-10703.02	-10703.02			
*N*NH ₂	-10717.96	-10717.98	-10717.98			
*NH*NH	-10718.01	-10718.04	-10718.04			

11.3 Corrected free energy of intermediates

Reaction species	E _{DFT} /eV	E _{ZPE} /eV	-T· <i>S</i> /eV	G/eV	$\Delta G_{\rm i}/{ m eV}$
D1-SiP (*)	-10145.34	4.09	-4.36	-10145.61	—
*N*N	-10685.47	4.35	-4.43	-10685.55	0.36
*N*NH	-10702.99	4.68	-4.39	-10702.70	-1.06
*N*NH ₂	-10717.96	4.97	-4.62	-10717.61	1.17
*N	-10418.12	4.26	-4.35	-10418.21	-3.12
*NH	-10433.28	4.52	-4.42	-10433.18	1.12
*NH ₂	-10448.95	4.84	-4.47	-10448.58	0.69
*NH ₃	-10464.48	5.16	-4.52	-10463.84	0.82
NH ₃	-318.89	0.89	-0.60	-318.60	-0.37

Table S6. Corrected free energies for NRR intermediates along path1

 Table S7. Corrected free energies for NRR intermediates along path2

Reaction species	E _{DFT} /eV	E _{ZPE} /eV	-T· <i>S</i> /eV	G/eV	$\Delta G_{\rm i}/{ m eV}$
D1-SiP (*)	-10145.34	4.09	-4.36	-10145.61	—
*N*N	-10685.47	4.35	-4.43	-10685.55	0.36
*N*NH	-10702.99	4.68	-4.39	-10702.70	-1.06
*NH*NH	-10718.01	4.93	-4.45	-10717.53	1.25
*NH*NH ₂	-10733.54	5.28	-4.47	-10732.73	0.89
*NH ₂ *NH ₂	-10749.22	5.58	-4.64	-10748.28	0.54
*NH ₂	-10448.95	4.84	-4.47	-10448.58	-2.82
*NH ₃	-10464.48	5.16	-4.52	-10463.84	0.82
NH ₃	-318.89	0.89	-0.60	-318.60	-0.37

Reaction species	E _{DFT} /eV	E _{ZPE} /eV	-T· <i>S</i> /eV	G/eV	$\Delta G_{\rm i}/{ m eV}$
D1-SiP (*)	-10145.34	4.09	-4.36	-10145.61	—
*N*N	-10685.47	4.35	-4.43	-10685.55	0.36
*NH*N	-10701.88	4.69	-4.43	-10701.62	0.02
*NH ₂ *N	-10717.96	4.99	-4.49	-10717.46	0.24
*N	-10418.12	4.26	-4.35	-10418.21	-3.27
*NH	-10433.28	4.52	-4.42	-10433.18	1.12
*NH ₂	-10448.22	4.80	-4.47	-10447.89	1.38
*NH ₃	-10464.23	5.14	-4.46	-10463.55	0.43
NH ₃	-318.89	0.89	-0.60	-318.60	-0.66

Table S8. Corrected free energies for NRR intermediates along path3

Table S9. Corrected free energies for NRR intermediates along path4

Reaction species	E _{DFT} /eV	E _{ZPE} /eV	-T· <i>S</i> /eV	G/eV	$\Delta G_{\rm i}/{ m eV}$
D1-SiP (*)	-10145.34	4.09	-4.36	-10145.61	_
*N*N	-10685.47	4.35	-4.43	-10685.55	0.36
*NH*N	-10701.88	4.69	-4.43	-10701.62	0.02
*NH*NH	-10717.85	4.98	-4.48	-10717.35	0.35
*NH ₂ *NH	-10733.34	5.29	-4.52	-10732.57	0.87
*NH ₂ *NH ₂	-10749.22	5.58	-4.64	-10748.28	0.38
*NH ₂	-10448.22	4.80	-4.47	-10447.89	-2.13
*NH ₃	-10464.23	5.14	-4.46	-10463.55	0.43
NH ₃	-318.89	0.89	-0.60	-318.60	-0.66