Supplementary Materials for:

Carrier doping induced strong magnetoelastic coupling in 2D lattice

Yan Liang^{1,*}, Xingshuai Lv², Thomas Frauenheim^{1,2,3,*}

¹Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany;

²Shenzhen JL Computational Science and Applied Research Institute, 518109 Shenzhen, P.R. China; ³Beijing Computational Science Research Center, 100193 Beijing, P.R. China.

*Corresponding author:

yliang@uni-bremen.de (Y.L)

thomas.frauenheim@bccms.uni-bremen.de (T.F.)

Figure S1. Top and side views of bulk β -PbO. The unit cell is distinguished by dashed lines.

Figure S2. Phonon spectrum for 2D β -PbO at paraelastic state *P*.

Figure S3. (a) Overall and (b) zoom in direction-dependent Possion's ratio of 2D β -PbO.

Figure S4. Doping concentration dependent (a) lattice constants and (b) ferroelastic strain for 2D β -PbO. The inset in (a) denotes the optimized one-dimensional like array for 2D β -PbO under doping density of 10.84 × 10¹⁴/cm².

Figure S5. (a) The variation of the magnetic energy and magnetic moment (per carrier) and (b) MAE along with the ferroelastic transition at doping concentration of 7.23×10^{14} /cm².

Figure S6. Energy barriers of ferroelastic switching for bilayer β -PbO under zero and 4.38 × 10^{14} /cm² hole doping concentration.

The lattice constants of bilayer β -PbO is calculated to be 5.76 Å and 4.75 Å. We check the possible doping-induced multiferroric phase in bilayer β -PbO by taking hole concentration of 4.38 × 10¹⁴/cm² (1.2 hole per unit cell) as an example. Moderate ferroelastic switching barrier is displayed under doping, and it is found that ferromagnetic state is energetically more favorable than

non-magnetic state by 13 meV/hole. Additionally, the easy magnetization axis along in-plane [010] direction is more stable than [100] and [001] directions by 202 and 1104 μ eV per unit cell, respectively. All these results support the strong magnetoelastic coupling in bilayer β -PbO under hole doping.